metadata
license: mit
base_model: vicgalle/xlm-roberta-large-xnli-anli
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlm-roberta-large-xnli-anli
results: []
xlm-roberta-large-xnli-anli
This model is a fine-tuned version of vicgalle/xlm-roberta-large-xnli-anli on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3689
- F1 Macro: 0.8721
- F1 Micro: 0.8729
- Accuracy Balanced: 0.8725
- Accuracy: 0.8729
- Precision Macro: 0.8718
- Recall Macro: 0.8725
- Precision Micro: 0.8729
- Recall Micro: 0.8729
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 8
- eval_batch_size: 64
- seed: 40
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.4942 | 0.17 | 200 | 0.4413 | 0.8081 | 0.8089 | 0.8093 | 0.8089 | 0.8076 | 0.8093 | 0.8089 | 0.8089 |
0.4114 | 0.34 | 400 | 0.3991 | 0.8227 | 0.8232 | 0.8250 | 0.8232 | 0.8226 | 0.8250 | 0.8232 | 0.8232 |
0.3467 | 0.51 | 600 | 0.3584 | 0.8388 | 0.8391 | 0.8421 | 0.8391 | 0.8396 | 0.8421 | 0.8391 | 0.8391 |
0.3402 | 0.68 | 800 | 0.3620 | 0.8534 | 0.8544 | 0.8536 | 0.8544 | 0.8532 | 0.8536 | 0.8544 | 0.8544 |
0.3304 | 0.85 | 1000 | 0.3385 | 0.8566 | 0.8576 | 0.8567 | 0.8576 | 0.8565 | 0.8567 | 0.8576 | 0.8576 |
0.3234 | 1.02 | 1200 | 0.3456 | 0.8637 | 0.8650 | 0.8631 | 0.8650 | 0.8645 | 0.8631 | 0.8650 | 0.8650 |
0.2702 | 1.19 | 1400 | 0.3201 | 0.8606 | 0.8613 | 0.8616 | 0.8613 | 0.8600 | 0.8616 | 0.8613 | 0.8613 |
0.2581 | 1.36 | 1600 | 0.3233 | 0.8619 | 0.8624 | 0.8639 | 0.8624 | 0.8615 | 0.8639 | 0.8624 | 0.8624 |
0.2414 | 1.52 | 1800 | 0.3451 | 0.8674 | 0.8687 | 0.8664 | 0.8687 | 0.8687 | 0.8664 | 0.8687 | 0.8687 |
0.2687 | 1.69 | 2000 | 0.3415 | 0.8577 | 0.8608 | 0.8544 | 0.8608 | 0.8677 | 0.8544 | 0.8608 | 0.8608 |
0.2518 | 1.86 | 2200 | 0.3378 | 0.8684 | 0.8692 | 0.8688 | 0.8692 | 0.8681 | 0.8688 | 0.8692 | 0.8692 |
0.2182 | 2.03 | 2400 | 0.3581 | 0.8698 | 0.8708 | 0.8697 | 0.8708 | 0.8700 | 0.8697 | 0.8708 | 0.8708 |
0.1919 | 2.2 | 2600 | 0.3671 | 0.8677 | 0.8687 | 0.8676 | 0.8687 | 0.8678 | 0.8676 | 0.8687 | 0.8687 |
0.1771 | 2.37 | 2800 | 0.3790 | 0.8709 | 0.8719 | 0.8707 | 0.8719 | 0.8710 | 0.8707 | 0.8719 | 0.8719 |
0.1793 | 2.54 | 3000 | 0.3856 | 0.8687 | 0.8692 | 0.8701 | 0.8692 | 0.8680 | 0.8701 | 0.8692 | 0.8692 |
0.1909 | 2.71 | 3200 | 0.3777 | 0.8686 | 0.8698 | 0.8682 | 0.8698 | 0.8691 | 0.8682 | 0.8698 | 0.8698 |
0.2021 | 2.88 | 3400 | 0.3685 | 0.8701 | 0.8708 | 0.8710 | 0.8708 | 0.8696 | 0.8710 | 0.8708 | 0.8708 |
eval result
Datasets | asadfgglie/nli-zh-tw-all/test | asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test | eval_dataset | test_dataset |
---|---|---|---|---|
eval_loss | 0.355 | 0.246 | 0.369 | 0.337 |
eval_f1_macro | 0.872 | 0.932 | 0.872 | 0.88 |
eval_f1_micro | 0.873 | 0.932 | 0.873 | 0.881 |
eval_accuracy_balanced | 0.872 | 0.932 | 0.873 | 0.88 |
eval_accuracy | 0.873 | 0.932 | 0.873 | 0.881 |
eval_precision_macro | 0.873 | 0.932 | 0.872 | 0.881 |
eval_recall_macro | 0.872 | 0.932 | 0.873 | 0.88 |
eval_precision_micro | 0.873 | 0.932 | 0.873 | 0.881 |
eval_recall_micro | 0.873 | 0.932 | 0.873 | 0.881 |
eval_runtime | 50.724 | 0.611 | 11.126 | 44.342 |
eval_samples_per_second | 167.574 | 1547.575 | 169.783 | 170.424 |
eval_steps_per_second | 2.622 | 24.539 | 2.696 | 2.684 |
Size of dataset | 8500 | 946 | 1889 | 7557 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3