File size: 5,947 Bytes
b49fff1
 
 
3cf3d90
 
e5339a7
debc0e4
834674b
e8415bd
b49fff1
 
dcfa973
5961ad0
b49fff1
63f8eb0
7d5ed03
9162bbc
 
5961ad0
 
 
 
 
74515fe
5961ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8533b
 
5961ad0
 
a320b12
5961ad0
 
dcfa973
1e8533b
 
 
 
 
 
 
 
5961ad0
 
1e8533b
 
a320b12
5961ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcfa973
5961ad0
 
fd31936
8fafcef
 
 
f82d214
8fafcef
 
 
 
 
 
 
a49a4a5
 
8fafcef
 
b4d6557
8fafcef
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
library_name: transformers
tags: []
pipeline_tag: fill-mask
widget:
 - text: "shop làm ăn như cái <mask>"
 - text: "hag từ Quảng <mask> kực nét"
 - text: "Set xinh quá, <mask> bèo nhèo"
 - text: "ăn nói xà <mask>"
---

# 5CD-AI/visobert-14gb-corpus
## Overview
<!-- Provide a quick summary of what the model is/does. -->
We continually pretrain `uitnlp/visobert` on a merged 14GB dataset, the training dataset includes:
- Crawled data (100M comments and 15M posts on Facebook)
- UIT data, which is used to pretrain `uitnlp/visobert`
- MC4 ecommerce

Here are the results on 4 downstream tasks on Vietnamese social media texts, including Emotion Recognition(UIT-VSMEC), Hate Speech Detection(UIT-HSD), Spam Reviews Detection(ViSpamReviews), Hate Speech Spans Detection(ViHOS):
<table>
        <tr align="center">
            <td rowspan=2><b>Model</td>
            <td rowspan=2><b>Avg MF1</td>
            <td colspan=3><b>Emotion Recognition</td>
            <td colspan=3><b>Hate Speech Detection</td>
            <td colspan=3><b>Spam Reviews Detection</td>
            <td colspan=3><b>Hate Speech Spans Detection</td>
        </tr>
        <tr align="center">
            <td><b>Acc</td>
            <td><b>WF1</td>
            <td><b>MF1</td>
            <td><b>Acc</td>
            <td><b>WF1</td>
            <td><b>MF1</td>
            <td><b>Acc</td>
            <td><b>WF1</td>
            <td><b>MF1</td>
            <td><b>Acc</td>
            <td><b>WF1</td>
            <td><b>MF1</td>
        </tr>
        <tr align="center">
            <td align="left">viBERT</td>
            <td>78.16</td>
            <td>61.91</td>
            <td>61.98</td>
            <td>59.7</td>
            <td>85.34</td>
            <td>85.01</td>
            <td>62.07</td>
            <td>89.93</td>
            <td>89.79</td>
            <td>76.8</td>
            <td>90.42</td>
            <td>90.45</td>
            <td>84.55</td>
        </tr>
        <tr align="center">
            <td align="left">vELECTRA</td>
            <td>79.23</td>
            <td>64.79</td>
            <td>64.71</td>
            <td>61.95</td>
            <td>86.96</td>
            <td>86.37</td>
            <td>63.95</td>
            <td>89.83</td>
            <td>89.68</td>
            <td>76.23</td>
            <td>90.59</td>
            <td>90.58</td>
            <td>85.12</td>
        </tr>
        <tr align="center">
            <td align="left">PhoBERT-Base </td>
            <td>79.3</td>
            <td>63.49</td>
            <td>63.36</td>
            <td>61.41</td>
            <td>87.12</td>
            <td>86.81</td>
            <td>65.01</td>
            <td>89.83</td>
            <td>89.75</td>
            <td>76.18</td>
            <td>91.32</td>
            <td>91.38</td>
            <td>85.92</td>
        </tr>
        <tr align="center">
            <td align="left">PhoBERT-Large</td>
            <td>79.82</td>
            <td>64.71</td>
            <td>64.66</td>
            <td>62.55</td>
            <td>87.32</td>
            <td>86.98</td>
            <td>65.14</td>
            <td>90.12</td>
            <td>90.03</td>
            <td>76.88</td>
            <td>91.44</td>
            <td>91.46</td>
            <td>86.56</td>
        </tr>
        <tr align="center">
            <td align="left">ViSoBERT</td>
            <td>81.58</td>
            <td>68.1</td>
            <td>68.37</td>
            <td>65.88</td>
            <td>88.51</td>
            <td>88.31</td>
            <td>68.77</td>
            <td>90.99</td>
            <td><b>90.92</td>
            <td><b>79.06</td>
            <td>91.62</td>
            <td>91.57</td>
            <td>86.8</td>
        </tr>
        <tr align="center">
            <td align="left">visobert-14gb-corpus</td>
            <td><b>82.2</td>
            <td><b>68.69</td>
            <td><b>68.75</td>
            <td><b>66.03</td>
            <td><b>88.79</td>
            <td><b>88.6</td>
            <td><b>69.57</td>
            <td><b>91.02</td>
            <td>90.88</td>
            <td>77.13</td>
            <td><b>93.69</td>
            <td><b>93.63</td>
            <td><b>89.66</td>
        </tr>
    </div>
</table>

## Usage (HuggingFace Transformers)

Install `transformers` package:
    
    pip install transformers

Then you can use this model for fill-mask task like this:

```python
from transformers import pipeline

model_path = "5CD-AI/visobert-14gb-corpus"
mask_filler = pipeline("fill-mask", model_path)

mask_filler("shop làm ăn như cái <mask>", top_k=10)
```

## Fine-tune Configuration
We fine-tune `5CD-AI/visobert-14gb-corpus` on 4 downstream tasks with `transformers` library with the following configuration:
- seed: 42
- gradient_accumulation_steps: 1
- weight_decay: 0.01
- optimizer: AdamW with betas=(0.9, 0.999) and epsilon=1e-08
- training_epochs: 30
- model_max_length: 128
- learning_rate: 1e-5
- metric_for_best_model: wf1
- strategy: epoch

And different additional configurations for each task:
| Emotion Recognition                                                               | Hate Speech Detection                                                              | Spam Reviews Detection                                                            | Hate Speech Spans Detection                                                       |
| --------------------------------------------------------------------------------- | --------------------------------------------------------------------------------- | --------------------------------------------------------------------------------- | --------------------------------------------------------------------------------- |
|\- train_batch_size: 64<br>\- lr_scheduler_type: linear | \- train_batch_size: 32<br>\- lr_scheduler_type: linear | \- train_batch_size: 32<br>\- lr_scheduler_type: cosine | \- train_batch_size: 32<br>\- lr_scheduler_type: cosine |