File size: 9,716 Bytes
0106545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import cv2
import numpy as np

from annotator.mmpkg.mmcv.arraymisc import dequantize, quantize
from annotator.mmpkg.mmcv.image import imread, imwrite
from annotator.mmpkg.mmcv.utils import is_str


def flowread(flow_or_path, quantize=False, concat_axis=0, *args, **kwargs):
    """Read an optical flow map.

    Args:
        flow_or_path (ndarray or str): A flow map or filepath.
        quantize (bool): whether to read quantized pair, if set to True,
            remaining args will be passed to :func:`dequantize_flow`.
        concat_axis (int): The axis that dx and dy are concatenated,
            can be either 0 or 1. Ignored if quantize is False.

    Returns:
        ndarray: Optical flow represented as a (h, w, 2) numpy array
    """
    if isinstance(flow_or_path, np.ndarray):
        if (flow_or_path.ndim != 3) or (flow_or_path.shape[-1] != 2):
            raise ValueError(f'Invalid flow with shape {flow_or_path.shape}')
        return flow_or_path
    elif not is_str(flow_or_path):
        raise TypeError(f'"flow_or_path" must be a filename or numpy array, '
                        f'not {type(flow_or_path)}')

    if not quantize:
        with open(flow_or_path, 'rb') as f:
            try:
                header = f.read(4).decode('utf-8')
            except Exception:
                raise IOError(f'Invalid flow file: {flow_or_path}')
            else:
                if header != 'PIEH':
                    raise IOError(f'Invalid flow file: {flow_or_path}, '
                                  'header does not contain PIEH')

            w = np.fromfile(f, np.int32, 1).squeeze()
            h = np.fromfile(f, np.int32, 1).squeeze()
            flow = np.fromfile(f, np.float32, w * h * 2).reshape((h, w, 2))
    else:
        assert concat_axis in [0, 1]
        cat_flow = imread(flow_or_path, flag='unchanged')
        if cat_flow.ndim != 2:
            raise IOError(
                f'{flow_or_path} is not a valid quantized flow file, '
                f'its dimension is {cat_flow.ndim}.')
        assert cat_flow.shape[concat_axis] % 2 == 0
        dx, dy = np.split(cat_flow, 2, axis=concat_axis)
        flow = dequantize_flow(dx, dy, *args, **kwargs)

    return flow.astype(np.float32)


def flowwrite(flow, filename, quantize=False, concat_axis=0, *args, **kwargs):
    """Write optical flow to file.

    If the flow is not quantized, it will be saved as a .flo file losslessly,
    otherwise a jpeg image which is lossy but of much smaller size. (dx and dy
    will be concatenated horizontally into a single image if quantize is True.)

    Args:
        flow (ndarray): (h, w, 2) array of optical flow.
        filename (str): Output filepath.
        quantize (bool): Whether to quantize the flow and save it to 2 jpeg
            images. If set to True, remaining args will be passed to
            :func:`quantize_flow`.
        concat_axis (int): The axis that dx and dy are concatenated,
            can be either 0 or 1. Ignored if quantize is False.
    """
    if not quantize:
        with open(filename, 'wb') as f:
            f.write('PIEH'.encode('utf-8'))
            np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
            flow = flow.astype(np.float32)
            flow.tofile(f)
            f.flush()
    else:
        assert concat_axis in [0, 1]
        dx, dy = quantize_flow(flow, *args, **kwargs)
        dxdy = np.concatenate((dx, dy), axis=concat_axis)
        imwrite(dxdy, filename)


def quantize_flow(flow, max_val=0.02, norm=True):
    """Quantize flow to [0, 255].

    After this step, the size of flow will be much smaller, and can be
    dumped as jpeg images.

    Args:
        flow (ndarray): (h, w, 2) array of optical flow.
        max_val (float): Maximum value of flow, values beyond
                        [-max_val, max_val] will be truncated.
        norm (bool): Whether to divide flow values by image width/height.

    Returns:
        tuple[ndarray]: Quantized dx and dy.
    """
    h, w, _ = flow.shape
    dx = flow[..., 0]
    dy = flow[..., 1]
    if norm:
        dx = dx / w  # avoid inplace operations
        dy = dy / h
    # use 255 levels instead of 256 to make sure 0 is 0 after dequantization.
    flow_comps = [
        quantize(d, -max_val, max_val, 255, np.uint8) for d in [dx, dy]
    ]
    return tuple(flow_comps)


def dequantize_flow(dx, dy, max_val=0.02, denorm=True):
    """Recover from quantized flow.

    Args:
        dx (ndarray): Quantized dx.
        dy (ndarray): Quantized dy.
        max_val (float): Maximum value used when quantizing.
        denorm (bool): Whether to multiply flow values with width/height.

    Returns:
        ndarray: Dequantized flow.
    """
    assert dx.shape == dy.shape
    assert dx.ndim == 2 or (dx.ndim == 3 and dx.shape[-1] == 1)

    dx, dy = [dequantize(d, -max_val, max_val, 255) for d in [dx, dy]]

    if denorm:
        dx *= dx.shape[1]
        dy *= dx.shape[0]
    flow = np.dstack((dx, dy))
    return flow


def flow_warp(img, flow, filling_value=0, interpolate_mode='nearest'):
    """Use flow to warp img.

    Args:
        img (ndarray, float or uint8): Image to be warped.
        flow (ndarray, float): Optical Flow.
        filling_value (int): The missing pixels will be set with filling_value.
        interpolate_mode (str): bilinear -> Bilinear Interpolation;
                                nearest -> Nearest Neighbor.

    Returns:
        ndarray: Warped image with the same shape of img
    """
    warnings.warn('This function is just for prototyping and cannot '
                  'guarantee the computational efficiency.')
    assert flow.ndim == 3, 'Flow must be in 3D arrays.'
    height = flow.shape[0]
    width = flow.shape[1]
    channels = img.shape[2]

    output = np.ones(
        (height, width, channels), dtype=img.dtype) * filling_value

    grid = np.indices((height, width)).swapaxes(0, 1).swapaxes(1, 2)
    dx = grid[:, :, 0] + flow[:, :, 1]
    dy = grid[:, :, 1] + flow[:, :, 0]
    sx = np.floor(dx).astype(int)
    sy = np.floor(dy).astype(int)
    valid = (sx >= 0) & (sx < height - 1) & (sy >= 0) & (sy < width - 1)

    if interpolate_mode == 'nearest':
        output[valid, :] = img[dx[valid].round().astype(int),
                               dy[valid].round().astype(int), :]
    elif interpolate_mode == 'bilinear':
        # dirty walkround for integer positions
        eps_ = 1e-6
        dx, dy = dx + eps_, dy + eps_
        left_top_ = img[np.floor(dx[valid]).astype(int),
                        np.floor(dy[valid]).astype(int), :] * (
                            np.ceil(dx[valid]) - dx[valid])[:, None] * (
                                np.ceil(dy[valid]) - dy[valid])[:, None]
        left_down_ = img[np.ceil(dx[valid]).astype(int),
                         np.floor(dy[valid]).astype(int), :] * (
                             dx[valid] - np.floor(dx[valid]))[:, None] * (
                                 np.ceil(dy[valid]) - dy[valid])[:, None]
        right_top_ = img[np.floor(dx[valid]).astype(int),
                         np.ceil(dy[valid]).astype(int), :] * (
                             np.ceil(dx[valid]) - dx[valid])[:, None] * (
                                 dy[valid] - np.floor(dy[valid]))[:, None]
        right_down_ = img[np.ceil(dx[valid]).astype(int),
                          np.ceil(dy[valid]).astype(int), :] * (
                              dx[valid] - np.floor(dx[valid]))[:, None] * (
                                  dy[valid] - np.floor(dy[valid]))[:, None]
        output[valid, :] = left_top_ + left_down_ + right_top_ + right_down_
    else:
        raise NotImplementedError(
            'We only support interpolation modes of nearest and bilinear, '
            f'but got {interpolate_mode}.')
    return output.astype(img.dtype)


def flow_from_bytes(content):
    """Read dense optical flow from bytes.

    .. note::
        This load optical flow function works for FlyingChairs, FlyingThings3D,
        Sintel, FlyingChairsOcc datasets, but cannot load the data from
        ChairsSDHom.

    Args:
        content (bytes): Optical flow bytes got from files or other streams.

    Returns:
        ndarray: Loaded optical flow with the shape (H, W, 2).
    """

    # header in first 4 bytes
    header = content[:4]
    if header.decode('utf-8') != 'PIEH':
        raise Exception('Flow file header does not contain PIEH')
    # width in second 4 bytes
    width = np.frombuffer(content[4:], np.int32, 1).squeeze()
    # height in third 4 bytes
    height = np.frombuffer(content[8:], np.int32, 1).squeeze()
    # after first 12 bytes, all bytes are flow
    flow = np.frombuffer(content[12:], np.float32, width * height * 2).reshape(
        (height, width, 2))

    return flow


def sparse_flow_from_bytes(content):
    """Read the optical flow in KITTI datasets from bytes.

    This function is modified from RAFT load the `KITTI datasets
    <https://github.com/princeton-vl/RAFT/blob/224320502d66c356d88e6c712f38129e60661e80/core/utils/frame_utils.py#L102>`_.

    Args:
        content (bytes): Optical flow bytes got from files or other streams.

    Returns:
        Tuple(ndarray, ndarray): Loaded optical flow with the shape (H, W, 2)
            and flow valid mask with the shape (H, W).
    """  # nopa

    content = np.frombuffer(content, np.uint8)
    flow = cv2.imdecode(content, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
    flow = flow[:, :, ::-1].astype(np.float32)
    # flow shape (H, W, 2) valid shape (H, W)
    flow, valid = flow[:, :, :2], flow[:, :, 2]
    flow = (flow - 2**15) / 64.0
    return flow, valid