File size: 6,582 Bytes
0106545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable

from ..utils import ext_loader

ext_module = ext_loader.load_ext('_ext', [
    'sigmoid_focal_loss_forward', 'sigmoid_focal_loss_backward',
    'softmax_focal_loss_forward', 'softmax_focal_loss_backward'
])


class SigmoidFocalLossFunction(Function):

    @staticmethod
    def symbolic(g, input, target, gamma, alpha, weight, reduction):
        return g.op(
            'mmcv::MMCVSigmoidFocalLoss',
            input,
            target,
            gamma_f=gamma,
            alpha_f=alpha,
            weight_f=weight,
            reduction_s=reduction)

    @staticmethod
    def forward(ctx,
                input,
                target,
                gamma=2.0,
                alpha=0.25,
                weight=None,
                reduction='mean'):

        assert isinstance(target, (torch.LongTensor, torch.cuda.LongTensor))
        assert input.dim() == 2
        assert target.dim() == 1
        assert input.size(0) == target.size(0)
        if weight is None:
            weight = input.new_empty(0)
        else:
            assert weight.dim() == 1
            assert input.size(1) == weight.size(0)
        ctx.reduction_dict = {'none': 0, 'mean': 1, 'sum': 2}
        assert reduction in ctx.reduction_dict.keys()

        ctx.gamma = float(gamma)
        ctx.alpha = float(alpha)
        ctx.reduction = ctx.reduction_dict[reduction]

        output = input.new_zeros(input.size())

        ext_module.sigmoid_focal_loss_forward(
            input, target, weight, output, gamma=ctx.gamma, alpha=ctx.alpha)
        if ctx.reduction == ctx.reduction_dict['mean']:
            output = output.sum() / input.size(0)
        elif ctx.reduction == ctx.reduction_dict['sum']:
            output = output.sum()
        ctx.save_for_backward(input, target, weight)
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        input, target, weight = ctx.saved_tensors

        grad_input = input.new_zeros(input.size())

        ext_module.sigmoid_focal_loss_backward(
            input,
            target,
            weight,
            grad_input,
            gamma=ctx.gamma,
            alpha=ctx.alpha)

        grad_input *= grad_output
        if ctx.reduction == ctx.reduction_dict['mean']:
            grad_input /= input.size(0)
        return grad_input, None, None, None, None, None


sigmoid_focal_loss = SigmoidFocalLossFunction.apply


class SigmoidFocalLoss(nn.Module):

    def __init__(self, gamma, alpha, weight=None, reduction='mean'):
        super(SigmoidFocalLoss, self).__init__()
        self.gamma = gamma
        self.alpha = alpha
        self.register_buffer('weight', weight)
        self.reduction = reduction

    def forward(self, input, target):
        return sigmoid_focal_loss(input, target, self.gamma, self.alpha,
                                  self.weight, self.reduction)

    def __repr__(self):
        s = self.__class__.__name__
        s += f'(gamma={self.gamma}, '
        s += f'alpha={self.alpha}, '
        s += f'reduction={self.reduction})'
        return s


class SoftmaxFocalLossFunction(Function):

    @staticmethod
    def symbolic(g, input, target, gamma, alpha, weight, reduction):
        return g.op(
            'mmcv::MMCVSoftmaxFocalLoss',
            input,
            target,
            gamma_f=gamma,
            alpha_f=alpha,
            weight_f=weight,
            reduction_s=reduction)

    @staticmethod
    def forward(ctx,
                input,
                target,
                gamma=2.0,
                alpha=0.25,
                weight=None,
                reduction='mean'):

        assert isinstance(target, (torch.LongTensor, torch.cuda.LongTensor))
        assert input.dim() == 2
        assert target.dim() == 1
        assert input.size(0) == target.size(0)
        if weight is None:
            weight = input.new_empty(0)
        else:
            assert weight.dim() == 1
            assert input.size(1) == weight.size(0)
        ctx.reduction_dict = {'none': 0, 'mean': 1, 'sum': 2}
        assert reduction in ctx.reduction_dict.keys()

        ctx.gamma = float(gamma)
        ctx.alpha = float(alpha)
        ctx.reduction = ctx.reduction_dict[reduction]

        channel_stats, _ = torch.max(input, dim=1)
        input_softmax = input - channel_stats.unsqueeze(1).expand_as(input)
        input_softmax.exp_()

        channel_stats = input_softmax.sum(dim=1)
        input_softmax /= channel_stats.unsqueeze(1).expand_as(input)

        output = input.new_zeros(input.size(0))
        ext_module.softmax_focal_loss_forward(
            input_softmax,
            target,
            weight,
            output,
            gamma=ctx.gamma,
            alpha=ctx.alpha)

        if ctx.reduction == ctx.reduction_dict['mean']:
            output = output.sum() / input.size(0)
        elif ctx.reduction == ctx.reduction_dict['sum']:
            output = output.sum()
        ctx.save_for_backward(input_softmax, target, weight)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        input_softmax, target, weight = ctx.saved_tensors
        buff = input_softmax.new_zeros(input_softmax.size(0))
        grad_input = input_softmax.new_zeros(input_softmax.size())

        ext_module.softmax_focal_loss_backward(
            input_softmax,
            target,
            weight,
            buff,
            grad_input,
            gamma=ctx.gamma,
            alpha=ctx.alpha)

        grad_input *= grad_output
        if ctx.reduction == ctx.reduction_dict['mean']:
            grad_input /= input_softmax.size(0)
        return grad_input, None, None, None, None, None


softmax_focal_loss = SoftmaxFocalLossFunction.apply


class SoftmaxFocalLoss(nn.Module):

    def __init__(self, gamma, alpha, weight=None, reduction='mean'):
        super(SoftmaxFocalLoss, self).__init__()
        self.gamma = gamma
        self.alpha = alpha
        self.register_buffer('weight', weight)
        self.reduction = reduction

    def forward(self, input, target):
        return softmax_focal_loss(input, target, self.gamma, self.alpha,
                                  self.weight, self.reduction)

    def __repr__(self):
        s = self.__class__.__name__
        s += f'(gamma={self.gamma}, '
        s += f'alpha={self.alpha}, '
        s += f'reduction={self.reduction})'
        return s