File size: 6,697 Bytes
0106545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch import Tensor, nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair

from ..utils import ext_loader

ext_module = ext_loader.load_ext(
    '_ext', ['correlation_forward', 'correlation_backward'])


class CorrelationFunction(Function):

    @staticmethod
    def forward(ctx,
                input1,
                input2,
                kernel_size=1,
                max_displacement=1,
                stride=1,
                padding=1,
                dilation=1,
                dilation_patch=1):

        ctx.save_for_backward(input1, input2)

        kH, kW = ctx.kernel_size = _pair(kernel_size)
        patch_size = max_displacement * 2 + 1
        ctx.patch_size = patch_size
        dH, dW = ctx.stride = _pair(stride)
        padH, padW = ctx.padding = _pair(padding)
        dilationH, dilationW = ctx.dilation = _pair(dilation)
        dilation_patchH, dilation_patchW = ctx.dilation_patch = _pair(
            dilation_patch)

        output_size = CorrelationFunction._output_size(ctx, input1)

        output = input1.new_zeros(output_size)

        ext_module.correlation_forward(
            input1,
            input2,
            output,
            kH=kH,
            kW=kW,
            patchH=patch_size,
            patchW=patch_size,
            padH=padH,
            padW=padW,
            dilationH=dilationH,
            dilationW=dilationW,
            dilation_patchH=dilation_patchH,
            dilation_patchW=dilation_patchW,
            dH=dH,
            dW=dW)

        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        input1, input2 = ctx.saved_tensors

        kH, kW = ctx.kernel_size
        patch_size = ctx.patch_size
        padH, padW = ctx.padding
        dilationH, dilationW = ctx.dilation
        dilation_patchH, dilation_patchW = ctx.dilation_patch
        dH, dW = ctx.stride
        grad_input1 = torch.zeros_like(input1)
        grad_input2 = torch.zeros_like(input2)

        ext_module.correlation_backward(
            grad_output,
            input1,
            input2,
            grad_input1,
            grad_input2,
            kH=kH,
            kW=kW,
            patchH=patch_size,
            patchW=patch_size,
            padH=padH,
            padW=padW,
            dilationH=dilationH,
            dilationW=dilationW,
            dilation_patchH=dilation_patchH,
            dilation_patchW=dilation_patchW,
            dH=dH,
            dW=dW)
        return grad_input1, grad_input2, None, None, None, None, None, None

    @staticmethod
    def _output_size(ctx, input1):
        iH, iW = input1.size(2), input1.size(3)
        batch_size = input1.size(0)
        kH, kW = ctx.kernel_size
        patch_size = ctx.patch_size
        dH, dW = ctx.stride
        padH, padW = ctx.padding
        dilationH, dilationW = ctx.dilation
        dilatedKH = (kH - 1) * dilationH + 1
        dilatedKW = (kW - 1) * dilationW + 1

        oH = int((iH + 2 * padH - dilatedKH) / dH + 1)
        oW = int((iW + 2 * padW - dilatedKW) / dW + 1)

        output_size = (batch_size, patch_size, patch_size, oH, oW)
        return output_size


class Correlation(nn.Module):
    r"""Correlation operator

    This correlation operator works for optical flow correlation computation.

    There are two batched tensors with shape :math:`(N, C, H, W)`,
    and the correlation output's shape is :math:`(N, max\_displacement \times
    2 + 1, max\_displacement * 2 + 1, H_{out}, W_{out})`

    where

    .. math::
        H_{out} = \left\lfloor\frac{H_{in}  + 2 \times padding -
            dilation \times (kernel\_size - 1) - 1}
            {stride} + 1\right\rfloor

    .. math::
        W_{out} = \left\lfloor\frac{W_{in}  + 2 \times padding - dilation
            \times (kernel\_size - 1) - 1}
            {stride} + 1\right\rfloor

    the correlation item :math:`(N_i, dy, dx)` is formed by taking the sliding
    window convolution between input1 and shifted input2,

    .. math::
        Corr(N_i, dx, dy) =
        \sum_{c=0}^{C-1}
        input1(N_i, c) \star
        \mathcal{S}(input2(N_i, c), dy, dx)

    where :math:`\star` is the valid 2d sliding window convolution operator,
    and :math:`\mathcal{S}` means shifting the input features (auto-complete
    zero marginal), and :math:`dx, dy` are shifting distance, :math:`dx, dy \in
    [-max\_displacement \times dilation\_patch, max\_displacement \times
    dilation\_patch]`.

    Args:
        kernel_size (int): The size of sliding window i.e. local neighborhood
            representing the center points and involved in correlation
            computation. Defaults to 1.
        max_displacement (int): The radius for computing correlation volume,
            but the actual working space can be dilated by dilation_patch.
            Defaults to 1.
        stride (int): The stride of the sliding blocks in the input spatial
            dimensions. Defaults to 1.
        padding (int): Zero padding added to all four sides of the input1.
            Defaults to 0.
        dilation (int): The spacing of local neighborhood that will involved
            in correlation. Defaults to 1.
        dilation_patch (int): The spacing between position need to compute
            correlation.  Defaults to 1.
    """

    def __init__(self,
                 kernel_size: int = 1,
                 max_displacement: int = 1,
                 stride: int = 1,
                 padding: int = 0,
                 dilation: int = 1,
                 dilation_patch: int = 1) -> None:
        super().__init__()
        self.kernel_size = kernel_size
        self.max_displacement = max_displacement
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.dilation_patch = dilation_patch

    def forward(self, input1: Tensor, input2: Tensor) -> Tensor:
        return CorrelationFunction.apply(input1, input2, self.kernel_size,
                                         self.max_displacement, self.stride,
                                         self.padding, self.dilation,
                                         self.dilation_patch)

    def __repr__(self) -> str:
        s = self.__class__.__name__
        s += f'(kernel_size={self.kernel_size}, '
        s += f'max_displacement={self.max_displacement}, '
        s += f'stride={self.stride}, '
        s += f'padding={self.padding}, '
        s += f'dilation={self.dilation}, '
        s += f'dilation_patch={self.dilation_patch})'
        return s