File size: 6,697 Bytes
0106545 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch import Tensor, nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair
from ..utils import ext_loader
ext_module = ext_loader.load_ext(
'_ext', ['correlation_forward', 'correlation_backward'])
class CorrelationFunction(Function):
@staticmethod
def forward(ctx,
input1,
input2,
kernel_size=1,
max_displacement=1,
stride=1,
padding=1,
dilation=1,
dilation_patch=1):
ctx.save_for_backward(input1, input2)
kH, kW = ctx.kernel_size = _pair(kernel_size)
patch_size = max_displacement * 2 + 1
ctx.patch_size = patch_size
dH, dW = ctx.stride = _pair(stride)
padH, padW = ctx.padding = _pair(padding)
dilationH, dilationW = ctx.dilation = _pair(dilation)
dilation_patchH, dilation_patchW = ctx.dilation_patch = _pair(
dilation_patch)
output_size = CorrelationFunction._output_size(ctx, input1)
output = input1.new_zeros(output_size)
ext_module.correlation_forward(
input1,
input2,
output,
kH=kH,
kW=kW,
patchH=patch_size,
patchW=patch_size,
padH=padH,
padW=padW,
dilationH=dilationH,
dilationW=dilationW,
dilation_patchH=dilation_patchH,
dilation_patchW=dilation_patchW,
dH=dH,
dW=dW)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
input1, input2 = ctx.saved_tensors
kH, kW = ctx.kernel_size
patch_size = ctx.patch_size
padH, padW = ctx.padding
dilationH, dilationW = ctx.dilation
dilation_patchH, dilation_patchW = ctx.dilation_patch
dH, dW = ctx.stride
grad_input1 = torch.zeros_like(input1)
grad_input2 = torch.zeros_like(input2)
ext_module.correlation_backward(
grad_output,
input1,
input2,
grad_input1,
grad_input2,
kH=kH,
kW=kW,
patchH=patch_size,
patchW=patch_size,
padH=padH,
padW=padW,
dilationH=dilationH,
dilationW=dilationW,
dilation_patchH=dilation_patchH,
dilation_patchW=dilation_patchW,
dH=dH,
dW=dW)
return grad_input1, grad_input2, None, None, None, None, None, None
@staticmethod
def _output_size(ctx, input1):
iH, iW = input1.size(2), input1.size(3)
batch_size = input1.size(0)
kH, kW = ctx.kernel_size
patch_size = ctx.patch_size
dH, dW = ctx.stride
padH, padW = ctx.padding
dilationH, dilationW = ctx.dilation
dilatedKH = (kH - 1) * dilationH + 1
dilatedKW = (kW - 1) * dilationW + 1
oH = int((iH + 2 * padH - dilatedKH) / dH + 1)
oW = int((iW + 2 * padW - dilatedKW) / dW + 1)
output_size = (batch_size, patch_size, patch_size, oH, oW)
return output_size
class Correlation(nn.Module):
r"""Correlation operator
This correlation operator works for optical flow correlation computation.
There are two batched tensors with shape :math:`(N, C, H, W)`,
and the correlation output's shape is :math:`(N, max\_displacement \times
2 + 1, max\_displacement * 2 + 1, H_{out}, W_{out})`
where
.. math::
H_{out} = \left\lfloor\frac{H_{in} + 2 \times padding -
dilation \times (kernel\_size - 1) - 1}
{stride} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} + 2 \times padding - dilation
\times (kernel\_size - 1) - 1}
{stride} + 1\right\rfloor
the correlation item :math:`(N_i, dy, dx)` is formed by taking the sliding
window convolution between input1 and shifted input2,
.. math::
Corr(N_i, dx, dy) =
\sum_{c=0}^{C-1}
input1(N_i, c) \star
\mathcal{S}(input2(N_i, c), dy, dx)
where :math:`\star` is the valid 2d sliding window convolution operator,
and :math:`\mathcal{S}` means shifting the input features (auto-complete
zero marginal), and :math:`dx, dy` are shifting distance, :math:`dx, dy \in
[-max\_displacement \times dilation\_patch, max\_displacement \times
dilation\_patch]`.
Args:
kernel_size (int): The size of sliding window i.e. local neighborhood
representing the center points and involved in correlation
computation. Defaults to 1.
max_displacement (int): The radius for computing correlation volume,
but the actual working space can be dilated by dilation_patch.
Defaults to 1.
stride (int): The stride of the sliding blocks in the input spatial
dimensions. Defaults to 1.
padding (int): Zero padding added to all four sides of the input1.
Defaults to 0.
dilation (int): The spacing of local neighborhood that will involved
in correlation. Defaults to 1.
dilation_patch (int): The spacing between position need to compute
correlation. Defaults to 1.
"""
def __init__(self,
kernel_size: int = 1,
max_displacement: int = 1,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
dilation_patch: int = 1) -> None:
super().__init__()
self.kernel_size = kernel_size
self.max_displacement = max_displacement
self.stride = stride
self.padding = padding
self.dilation = dilation
self.dilation_patch = dilation_patch
def forward(self, input1: Tensor, input2: Tensor) -> Tensor:
return CorrelationFunction.apply(input1, input2, self.kernel_size,
self.max_displacement, self.stride,
self.padding, self.dilation,
self.dilation_patch)
def __repr__(self) -> str:
s = self.__class__.__name__
s += f'(kernel_size={self.kernel_size}, '
s += f'max_displacement={self.max_displacement}, '
s += f'stride={self.stride}, '
s += f'padding={self.padding}, '
s += f'dilation={self.dilation}, '
s += f'dilation_patch={self.dilation_patch})'
return s
|