2022happy's picture
update model card README.md
e842a0d
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - cifar10
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-pruned-0.4-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: cifar10
          type: cifar10
          config: plain_text
          split: train
          args: plain_text
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6266

swin-tiny-patch4-window7-224-pruned-0.4-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the cifar10 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0525
  • Accuracy: 0.6266

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6059 1.0 351 1.4089 0.4934
1.3254 2.0 703 1.1709 0.593
1.2453 2.99 1053 1.0525 0.6266

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3