metadata
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-multilingual-cased-finetuned-email-spam
results: []
widget:
- text: |-
From: "Derila" <yxboclz@dvarane.com.tr>
X-MailFrom:
To: <k.a.c.michel.marre@bch.aphp.fr>
Reply-To: "Derila" <yxboclz@dvarane.com.tr>
Subject: L'oreiller Derila #1 en France"
example_title: spam_1
- text: |-
From: Disney <disney@awggcj.us>
X-MailFrom: disney@awggcj.us
To: <inp-net@bde.inp-toulouse.fr>
Reply-To:
Subject: Your 90 Day Disney PIus Membership Must Be Activated By Tomorrow
example_title: spam_2
- text: >-
From: HuIu <huiu@awaqac.net>
X-MailFrom: huiu@awaqac.net
To: <inp-net@bde.inp-toulouse.fr>
Reply-To:
Subject: Your HuIu Membership Has Ended But We Are Giving You An Extra 90
Days, Today Only
example_title: spam_3
- text: |-
From: Laurent Fainsin <laurent.fainsin@etu.inp-n7.fr>
X-MailFrom:
To: net7@bde.enseeiht.fr
Reply-To:
Subject: [net7] Fwd: Re: Demande d'un H24 net7
example_title: ham_1
- text: >-
From: <Remi.Goudin@enseeiht.fr>
X-MailFrom:
To: net7@bde.enseeiht.fr
Reply-To:
Subject: [net7] Fwd: [CERT-RENATER #84796] 2022/INCIDENT
(CERTSVP20220421-21) Presence potentielle d'une version vulnerable
d'instance Grafana sur grafana.thcon.party
example_title: ham_2
- text: >-
From: <net7@list.bde.enseeiht.fr>
X-MailFrom: remi.goudin@enseeiht.fr
To: net7@bde.enseeiht.fr
Reply-To: <Remi.Goudin@enseeiht.fr>
Subject: Fwd: [CERT-RENATER #94661] 2023/INCIDENT (CERTSVP20230216-25)
Probable Infection par un Trojan du type Info Stealer : AveMaria Stealer
depuis 147.127.160.236 / neo.bde.inp-toulouse.fr sur votre domaine
enseeiht.fr
example_title: ham_3
distilbert-base-multilingual-cased-finetuned-email-spam
This model is a fine-tuned version of distilbert-base-multilingual-cased on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- label_smoothing_factor: 0.1
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3