File size: 5,918 Bytes
91867af 5bf8787 91867af 5bf8787 91867af 5bf8787 91867af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from typing import Any, List
import torch
import torch.nn.functional as F
from torch import nn
from pytorch_lightning import LightningModule
from torchmetrics import MaxMetric, MeanAbsoluteError, MinMetric
from torchmetrics.classification.accuracy import Accuracy
import torchvision.models as models
class ResNetLitModule(LightningModule):
def __init__(
self,
resnet_type: str = "resnet18",
pretrained=False,
lr: float = 0.001,
weight_decay: float = 0.0005,
):
"""Initialize function for a resnet module.
Args:
resnet_type (str, optional): Type of the used resnet network. Defaults to
"ResNet".
Can be one of the following values: "resnet18",
"resnet34", "resnet50", "resnet101", "resnet152", "resnext50_32x4d",
"resnext101_32x8d", "wide_resnet50_2", "wide_resnet101_2"
pretrained (bool, optional): if True loads pytorch pretrained models.
Defaults to False.
"""
super().__init__()
# this line allows to access init params with 'self.hparams' attribute
# it also ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False)
# loss function
self.criterion = torch.nn.MSELoss()
# use separate metric instance for train, val and test step
# to ensure a proper reduction over the epoch
self.train_mae = MeanAbsoluteError()
self.val_mae = MeanAbsoluteError()
self.test_mae = MeanAbsoluteError()
# for logging best so far validation accuracy
self.val_mae_best = MinMetric()
self.pretrained = pretrained
if resnet_type == "resnet18":
resnet_constructor = models.resnet18
elif resnet_type == "resnet34":
resnet_constructor = models.resnet34
elif resnet_type == "resnet50":
resnet_constructor = models.resnet50
elif resnet_type == "resnet101":
resnet_constructor = models.resnet101
elif resnet_type == "resnet152":
resnet_constructor = models.resnet152
elif resnet_type == "resnext50_32x4d":
resnet_constructor = models.resnext50_32x4d
elif resnet_type == "resnext101_32x8d":
resnet_constructor = models.resnext101_32x8d
elif resnet_type == "wide_resnet50_2":
resnet_constructor = models.wide_resnet50_2
elif resnet_type == "wide_resnet101_2":
resnet_constructor = models.wide_resnet101_2
else:
raise Exception(f"did not find model type: {resnet_type}")
backbone = resnet_constructor(pretrained=pretrained)
# init a pretrained resnet
num_filters = backbone.fc.in_features
layers = list(backbone.children())[:-1]
self.feature_extractor = nn.Sequential(*layers)
self.fc = nn.Linear(num_filters, 1)
def forward(self, x):
representations = self.feature_extractor(x).flatten(1)
x = self.fc(representations)
return x
def step(self, batch: Any):
x = batch["image"]
y = batch["focus_height"]
logits = self.forward(x)
loss = self.criterion(logits, y.unsqueeze(1))
preds = torch.squeeze(logits)
return loss, preds, y
def training_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log train metrics
mae = self.train_mae(preds, targets)
self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
self.log("train/mae", mae, on_step=False, on_epoch=True, prog_bar=True)
# we can return here dict with any tensors
# and then read it in some callback or in `training_epoch_end()`` below
# remember to always return loss from `training_step()` or else
# backpropagation will fail!
return {"loss": loss, "preds": preds, "targets": targets}
def training_epoch_end(self, outputs: List[Any]):
# `outputs` is a list of dicts returned from `training_step()`
pass
def validation_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log val metrics
mae = self.val_mae(preds, targets)
self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
self.log("val/mae", mae, on_step=False, on_epoch=True, prog_bar=True)
return {"loss": loss, "preds": preds, "targets": targets}
def validation_epoch_end(self, outputs: List[Any]):
mae = self.val_mae.compute() # get val accuracy from current epoch
self.val_mae_best.update(mae)
self.log(
"val/mae_best", self.val_mae_best.compute(), on_epoch=True, prog_bar=True
)
def test_step(self, batch: Any, batch_idx: int):
loss, preds, targets = self.step(batch)
# log test metrics
mae = self.test_mae(preds, targets)
self.log("test/loss", loss, on_step=False, on_epoch=True)
self.log("test/mae", mae, on_step=False, on_epoch=True)
def test_epoch_end(self, outputs: List[Any]):
print(outputs)
pass
def on_epoch_end(self):
# reset metrics at the end of every epoch
self.train_mae.reset()
self.test_mae.reset()
self.val_mae.reset()
def configure_optimizers(self):
"""Choose what optimizers and learning-rate schedulers.
Normally you'd need one. But in the case of GANs or similar you might
have multiple.
See examples here:
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers
"""
return torch.optim.Adam(
params=self.parameters(),
lr=self.hparams.lr,
weight_decay=self.hparams.weight_decay,
)
|