File size: 9,808 Bytes
d908fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754b856
 
12319ae
 
 
 
 
 
 
 
 
 
 
 
ba9c868
12319ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754b856
d908fd7
 
754b856
d908fd7
 
 
 
 
 
 
 
ba9c868
90cf80d
d908fd7
 
 
 
 
 
754b856
d908fd7
754b856
d908fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
754b856
d908fd7
754b856
d908fd7
 
 
 
754b856
 
d908fd7
754b856
d908fd7
 
 
 
 
 
754b856
d908fd7
754b856
d908fd7
 
 
 
a58327a
d908fd7
 
 
 
754b856
 
 
d908fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from typing import Any, List

import torch
from torch import nn
from pytorch_lightning import LightningModule
from torchmetrics import MaxMetric, MeanAbsoluteError, MinMetric
from torchmetrics.classification.accuracy import Accuracy


class SimpleDenseNet(nn.Module):
    def __init__(self, hparams: dict):
        super().__init__()

        self.model = nn.Sequential(
            nn.Linear(hparams["input_size"], hparams["lin1_size"]),
            nn.BatchNorm1d(hparams["lin1_size"]),
            nn.ReLU(),
            nn.Linear(hparams["lin1_size"], hparams["lin2_size"]),
            nn.BatchNorm1d(hparams["lin2_size"]),
            nn.ReLU(),
            nn.Linear(hparams["lin2_size"], hparams["lin3_size"]),
            nn.BatchNorm1d(hparams["lin3_size"]),
            nn.ReLU(),
            nn.Linear(hparams["lin3_size"], hparams["output_size"]),
        )

    def forward(self, x):
        batch_size, channels, width, height = x.size()

        # (batch, 1, width, height) -> (batch, 1*width*height)
        x = x.view(batch_size, -1)

        return self.model(x)


class FocusLitModule(LightningModule):
    """
    Example of LightningModule for MNIST classification.

    A LightningModule organizes your PyTorch code into 5 sections:
        - Computations (init).
        - Train loop (training_step)
        - Validation loop (validation_step)
        - Test loop (test_step)
        - Optimizers (configure_optimizers)

    Read the docs:
        https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html
    """

    def __init__(
        self,
        input_size: int = 75 * 75 * 3,
        lin1_size: int = 256,
        lin2_size: int = 256,
        lin3_size: int = 256,
        output_size: int = 1,
        lr: float = 0.001,
        weight_decay: float = 0.0005,
    ):
        super().__init__()

        # this line allows to access init params with 'self.hparams' attribute
        # it also ensures init params will be stored in ckpt
        self.save_hyperparameters(logger=False)

        self.model = SimpleDenseNet(hparams=self.hparams)

        # loss function
        self.criterion = torch.nn.L1Loss()

        # use separate metric instance for train, val and test step
        # to ensure a proper reduction over the epoch
        self.train_mae = MeanAbsoluteError()
        self.val_mae = MeanAbsoluteError()
        self.test_mae = MeanAbsoluteError()

        # for logging best so far validation accuracy
        self.val_mae_best = MinMetric()

    def forward(self, x: torch.Tensor):
        return self.model(x)

    def step(self, batch: Any):
        x = batch["image"]
        y = batch["focus_value"]
        logits = self.forward(x)
        loss = self.criterion(logits, y.unsqueeze(1))
        preds = torch.squeeze(logits)
        return loss, preds, y

    def training_step(self, batch: Any, batch_idx: int):
        loss, preds, targets = self.step(batch)

        # log train metrics
        mae = self.train_mae(preds, targets)
        self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
        self.log("train/mae", mae, on_step=False, on_epoch=True, prog_bar=True)

        # we can return here dict with any tensors
        # and then read it in some callback or in `training_epoch_end()`` below
        # remember to always return loss from `training_step()` or else backpropagation will fail!
        return {"loss": loss, "preds": preds, "targets": targets}

    def training_epoch_end(self, outputs: List[Any]):
        # `outputs` is a list of dicts returned from `training_step()`
        pass

    def validation_step(self, batch: Any, batch_idx: int):
        loss, preds, targets = self.step(batch)

        # log val metrics
        mae = self.val_mae(preds, targets)
        self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
        self.log("val/mae", mae, on_step=False, on_epoch=True, prog_bar=True)

        return {"loss": loss, "preds": preds, "targets": targets}

    def validation_epoch_end(self, outputs: List[Any]):
        mae = self.val_mae.compute()  # get val accuracy from current epoch
        self.val_mae_best.update(mae)
        self.log(
            "val/mae_best", self.val_mae_best.compute(), on_epoch=True, prog_bar=True
        )

    def test_step(self, batch: Any, batch_idx: int):
        loss, preds, targets = self.step(batch)

        # log test metrics
        mae = self.test_mae(preds, targets)
        self.log("test/loss", loss, on_step=False, on_epoch=True)
        self.log("test/mae", mae, on_step=False, on_epoch=True)

        return {"loss": loss, "preds": preds, "targets": targets}

    def test_epoch_end(self, outputs: List[Any]):
        print(outputs)
        pass

    def on_epoch_end(self):
        # reset metrics at the end of every epoch
        self.train_mae.reset()
        self.test_mae.reset()
        self.val_mae.reset()

    def configure_optimizers(self):
        """Choose what optimizers and learning-rate schedulers.

        Normally you'd need one. But in the case of GANs or similar you might have multiple.

        See examples here:
            https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers
        """
        return torch.optim.Adam(
            params=self.parameters(),
            lr=self.hparams.lr,
            weight_decay=self.hparams.weight_decay,
        )


class FocusMSELitModule(LightningModule):
    """
    Example of LightningModule for MNIST classification.

    A LightningModule organizes your PyTorch code into 5 sections:
        - Computations (init).
        - Train loop (training_step)
        - Validation loop (validation_step)
        - Test loop (test_step)
        - Optimizers (configure_optimizers)

    Read the docs:
        https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html
    """

    def __init__(
        self,
        input_size: int = 75 * 75 * 3,
        lin1_size: int = 256,
        lin2_size: int = 256,
        lin3_size: int = 256,
        output_size: int = 1,
        lr: float = 0.001,
        weight_decay: float = 0.0005,
    ):
        super().__init__()

        # this line allows to access init params with 'self.hparams' attribute
        # it also ensures init params will be stored in ckpt
        self.save_hyperparameters(logger=False)

        self.model = SimpleDenseNet(hparams=self.hparams)

        # loss function
        self.criterion = torch.nn.MSELoss()

        # use separate metric instance for train, val and test step
        # to ensure a proper reduction over the epoch
        self.train_mae = MeanAbsoluteError()
        self.val_mae = MeanAbsoluteError()
        self.test_mae = MeanAbsoluteError()

        # for logging best so far validation accuracy
        self.val_mae_best = MinMetric()

    def forward(self, x: torch.Tensor):
        return self.model(x)

    def step(self, batch: Any):
        x = batch["image"]
        y = batch["focus_value"]
        logits = self.forward(x)
        loss = self.criterion(logits, y.unsqueeze(1))
        preds = torch.squeeze(logits)
        return loss, preds, y

    def training_step(self, batch: Any, batch_idx: int):
        loss, preds, targets = self.step(batch)

        # log train metrics
        mae = self.train_mae(preds, targets)
        self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
        self.log("train/mae", mae, on_step=False, on_epoch=True, prog_bar=True)

        # we can return here dict with any tensors
        # and then read it in some callback or in `training_epoch_end()`` below
        # remember to always return loss from `training_step()` or else backpropagation will fail!
        return {"loss": loss, "preds": preds, "targets": targets}

    def training_epoch_end(self, outputs: List[Any]):
        # `outputs` is a list of dicts returned from `training_step()`
        pass

    def validation_step(self, batch: Any, batch_idx: int):
        loss, preds, targets = self.step(batch)

        # log val metrics
        mae = self.val_mae(preds, targets)
        self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
        self.log("val/mae", mae, on_step=False, on_epoch=True, prog_bar=True)

        return {"loss": loss, "preds": preds, "targets": targets}

    def validation_epoch_end(self, outputs: List[Any]):
        mae = self.val_mae.compute()  # get val accuracy from current epoch
        self.val_mae_best.update(mae)
        self.log(
            "val/mae_best", self.val_mae_best.compute(), on_epoch=True, prog_bar=True
        )

    def test_step(self, batch: Any, batch_idx: int):
        loss, preds, targets = self.step(batch)

        # log test metrics
        mae = self.test_mae(preds, targets)
        self.log("test/loss", loss, on_step=False, on_epoch=True)
        self.log("test/mae", mae, on_step=False, on_epoch=True)

        return {"loss": loss, "preds": preds, "targets": targets}

    def test_epoch_end(self, outputs: List[Any]):
        print(outputs)
        pass

    def on_epoch_end(self):
        # reset metrics at the end of every epoch
        self.train_mae.reset()
        self.test_mae.reset()
        self.val_mae.reset()

    def configure_optimizers(self):
        """Choose what optimizers and learning-rate schedulers.

        Normally you'd need one. But in the case of GANs or similar you might have multiple.

        See examples here:
            https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers
        """
        return torch.optim.Adam(
            params=self.parameters(),
            lr=self.hparams.lr,
            weight_decay=self.hparams.weight_decay,
        )