File size: 29,953 Bytes
47bbd43
 
2d25caf
 
 
 
 
 
f9f8143
2d25caf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47bbd43
2d25caf
 
c502d01
 
2d25caf
b629ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d25caf
7978b81
 
 
 
 
 
 
 
 
 
 
 
 
 
5f92894
7978b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d25caf
 
26abccc
2d25caf
33d9157
2d25caf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26abccc
2d25caf
33d9157
2d25caf
33d9157
2d25caf
 
 
 
 
 
 
fb9b987
 
 
2d25caf
 
 
 
 
 
 
 
 
 
 
 
be0893f
3c7b25f
 
5548a75
 
0dc2ad3
 
2d25caf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cad4273
2d25caf
 
 
 
cad4273
 
 
2d25caf
 
cad4273
9d43877
2d25caf
cad4273
2d25caf
a392f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dc2ad3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d43877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec66215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d43877
 
 
 
 
70fe7b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d43877
70fe7b5
 
 
 
 
 
 
 
 
 
9d43877
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
---
license: apache-2.0
library_name: generic
tags:
  - text2text-generation
  - punctuation
  - sentence-boundary-detection
  - truecasing
  - true-casing
language:
  - af
  - am
  - ar
  - bg
  - bn
  - de
  - el
  - en
  - es
  - et
  - fa
  - fi
  - fr
  - gu
  - hi
  - hr
  - hu
  - id
  - is
  - it
  - ja
  - kk
  - kn
  - ko
  - ky
  - lt
  - lv
  - mk
  - ml
  - mr
  - nl
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - rw
  - so
  - sr
  - sw
  - ta
  - te
  - tr
  - uk
  - zh
---

# Model Overview
This is an `xlm-roberta` fine-tuned to restore punctuation, true-case (capitalize), 
and detect sentence boundaries (full stops) in 47 languages.

# Model Architecture
This model implements the following graph, which allows punctuation, true-casing, and fullstop prediction 
in every language without language-specific behavior: 

![graph.png](https://s3.amazonaws.com/moonup/production/uploads/62d34c813eebd640a4f97587/jpr-pMdv6iHxnjbN4QNt0.png)

We start by tokenizing the text and encoding it with XLM-Roberta, which is the pre-trained portion of this graph.

Then we predict punctuation before and after every subtoken. 
Predicting before each token allows for Spanish inverted question marks.
Predicting after every token allows for all other punctuation, including punctuation within continuous-script 
languages and acronyms.

We use embeddings to represent the predicted punctuation tokens to inform the sentence boundary head of the
punctuation that'll be inserted into the text. This allows proper full stop prediction, since certain punctuation
tokens (periods, questions marks, etc.) are strongly correlated with sentence boundaries.

We then shift full stop predictions to the right by one, to inform the true-casing head of where the beginning
of each new sentence is. This is important since true-casing is strongly correlated to sentence boundaries.

For true-casing, we predict `N` predictions per subtoken, where `N` is the number of characters in the subtoken.
In practice, `N` is the maximum subtoken length and extra predictions are ignored. Essentially, true-casing is
modeled as a multi-label problem. This allows for upper-casing arbitrary characters, e.g., "NATO", "MacDonald", "mRNA", etc.

Applying all these predictions to the input text, we can punctuate, true-case, and split sentences in any language.

## Tokenizer

Instead of the hacky wrapper used by FairSeq and strangely ported (not fixed) by HuggingFace, the xlm-roberta SentencePiece model was adjusted to correctly encode
the text. Per HF's comments,

```python
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab    |    0    |    1    |   2    |    3    |  4  |  5  |  6  |   7   |   8   |  9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq  | '<s>'   | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's'   | '▁de' | '-'
# spm      | '<unk>' | '<s>'   | '</s>' | ','     | '.' | '▁' | 's' | '▁de' | '-'   | '▁a'
```

The SP model was un-hacked with the following snippet 
(SentencePiece experts, let me know if there is a problem here):

```python
from sentencepiece import SentencePieceProcessor
from sentencepiece.sentencepiece_model_pb2 import ModelProto

m = ModelProto()
m.ParseFromString(open("/path/to/xlmroberta/sentencepiece.bpe.model", "rb").read())

pieces = list(m.pieces)
pieces = (
    [
        ModelProto.SentencePiece(piece="<s>", type=ModelProto.SentencePiece.Type.CONTROL),
        ModelProto.SentencePiece(piece="<pad>", type=ModelProto.SentencePiece.Type.CONTROL),
        ModelProto.SentencePiece(piece="</s>", type=ModelProto.SentencePiece.Type.CONTROL),
        ModelProto.SentencePiece(piece="<unk>", type=ModelProto.SentencePiece.Type.UNKNOWN),
    ]
    + pieces[3:]
    + [ModelProto.SentencePiece(piece="<mask>", type=ModelProto.SentencePiece.Type.USER_DEFINED)]
)
del m.pieces[:]
m.pieces.extend(pieces)

with open("/path/to/new/sp.model", "wb") as f:
    f.write(m.SerializeToString())
```


## Post-Punctuation Tokens
This model predicts the following set of punctuation tokens after each subtoken:

| Token  | Description | Relevant Languages |
| ---: | :---------- | :----------- |
| \<NULL\>    | No punctuation | All |
| \<ACRONYM\>    | Every character in this subword is followed by a period | Primarily English, some European |
| .    | Latin full stop | Many |
| ,    | Latin comma | Many |
| ?    | Latin question mark | Many |
| ?    | Full-width question mark | Chinese, Japanese |
| ,    | Full-width comma | Chinese, Japanese |
| 。    | Full-width full stop | Chinese, Japanese |
| 、    | Ideographic comma | Chinese, Japanese |
| ・    | Middle dot | Japanese |
| ।    | Danda | Hindi, Bengali, Oriya |
| ؟    | Arabic question mark | Arabic |
| ;    | Greek question mark | Greek |
| ።    | Ethiopic full stop | Amharic |
| ፣    | Ethiopic comma | Amharic |
| ፧    | Ethiopic question mark | Amharic |


## Pre-Punctuation Tokens
This model predicts the following set of punctuation tokens before each subword:

| Token  | Description | Relevant Languages |
| ---: | :---------- | :----------- |
| \<NULL\>    | No punctuation | All |
| ¿    | Inverted question mark | Spanish |



# Training Details
This model was trained in the NeMo framework.

This model was trained on an A100 for slightly longer than 7 hours.
For validation and train metrics, see the [Tensorboard Logs](https://tensorboard.dev/experiment/xxnULI1aTeK37vUDL4ejiw/).

## Training Data
This model was trained with News Crawl data from WMT.

1M lines of text for each language was used, except for a few low-resource languages which may have used less.

Languages were chosen based on whether the News Crawl corpus contained enough reliable-quality data as judged by the author.

# Limitations
This model was trained on news data, and may not perform well on conversational or informal data.

Further, this model is unlikely to be of production quality. 
It was trained with "only" 1M lines per language, and the dev sets may have been noisy due to the nature of web-scraped news data.

This model over-predicts Spanish question marks, especially the inverted question mark `¿` (see metrics below). 
Since `¿` is a rare token, especially in the
context of a 47-language model, Spanish questions were over-sampled by selecting more of these sentences from
additional training data that was not used. However, this seems to have "over-corrected" the problem and a lot
of Spanish question marks are predicted. This can be fixed by exposing prior probabilities, but I'll fine-tune 
it later to fix this the right way.


# Evaluation
In these metrics, keep in mind that
1. The data is noisy
2. Sentence boundaries and true-casing are conditioned on predicted punctuation, which is the most difficult task and sometimes incorrect.
   When conditioning on reference punctuation, true-casing and SBD is practically 100% for most languages.
4. Punctuation can be subjective. E.g.,
   
   `Hola mundo, ¿cómo estás?`
   
   or

   `Hola mundo. ¿Cómo estás?`

   When the sentences are longer and more practical, these ambiguities abound and affect all 3 analytics.

## Test Data and Example Generation
Each test example was generated using the following procedure:

1. Concatenate 11 random sentences (1 + 10 for each sentence in the test set)
2. Lower-case the concatenated sentence
3. Remove all punctuation

The data is a held-out portion of News Crawl, which has been deduplicated. 
3,000 lines of data per language was used, generating 3,000 unique examples of 11 sentences each.
We generate 3,000 examples, where example `i` begins with sentence `i` and is followed by 10 random
sentences selected from the 3,000 sentence test set.

## Selected Language Evaluation Reports
For now, metrics for a few selected languages are shown below. 
Given the amount of work required to collect and pretty-print metrics in 47 languages, I'll add more eventually.

Expand any of the following tabs to see metrics for that language.


<details>
  <summary>English</summary>
  
```text
punct_post test report: 
    label                                                precision    recall       f1           support   
    <NULL> (label_id: 0)                                    99.18      98.47      98.82     538769
    <ACRONYM> (label_id: 1)                                 66.03      78.63      71.78        571
    . (label_id: 2)                                         90.66      93.68      92.14      30581
    , (label_id: 3)                                         74.18      82.93      78.31      23230
    ? (label_id: 4)                                         78.10      80.08      79.07       1024
    ? (label_id: 5)                                          0.00       0.00       0.00          0
    , (label_id: 6)                                          0.00       0.00       0.00          0
    。 (label_id: 7)                                          0.00       0.00       0.00          0
    、 (label_id: 8)                                          0.00       0.00       0.00          0
    ・ (label_id: 9)                                          0.00       0.00       0.00          0
    । (label_id: 10)                                         0.00       0.00       0.00          0
    ؟ (label_id: 11)                                         0.00       0.00       0.00          0
    ، (label_id: 12)                                         0.00       0.00       0.00          0
    ; (label_id: 13)                                         0.00       0.00       0.00          0
    ። (label_id: 14)                                         0.00       0.00       0.00          0
    ፣ (label_id: 15)                                         0.00       0.00       0.00          0
    ፧ (label_id: 16)                                         0.00       0.00       0.00          0
    -------------------
    micro avg                                               97.56      97.56      97.56     594175
    macro avg                                               81.63      86.76      84.03     594175
    weighted avg                                            97.70      97.56      97.62     594175
```

```text
cap test report: 
    label                                                precision    recall       f1           support   
    LOWER (label_id: 0)                                     99.71      99.85      99.78    2036824
    UPPER (label_id: 1)                                     96.40      93.27      94.81      87747
    -------------------
    micro avg                                               99.58      99.58      99.58    2124571
    macro avg                                               98.06      96.56      97.30    2124571
    weighted avg                                            99.57      99.58      99.58    2124571
```

```text
seg test report: 
    label                                                precision    recall       f1           support   
    NOSTOP (label_id: 0)                                    99.97      99.98      99.98     564228
    FULLSTOP (label_id: 1)                                  99.73      99.54      99.64      32947
    -------------------
    micro avg                                               99.96      99.96      99.96     597175
    macro avg                                               99.85      99.76      99.81     597175
    weighted avg                                            99.96      99.96      99.96     597175
```

</details>



<details>
  <summary>Spanish</summary>
  
```text
  punct_pre test report: 
    label                                                precision    recall       f1           support   
    <NULL> (label_id: 0)                                    99.96      99.76      99.86     609200
    ¿ (label_id: 1)                                         39.66      77.89      52.56       1221
    -------------------
    micro avg                                               99.72      99.72      99.72     610421
    macro avg                                               69.81      88.82      76.21     610421
    weighted avg                                            99.83      99.72      99.76     610421
```
      
```text
punct_post test report: 
    label                                                precision    recall       f1           support   
    <NULL> (label_id: 0)                                    99.17      98.44      98.80     553100
    <ACRONYM> (label_id: 1)                                 23.33      43.75      30.43         48
    . (label_id: 2)                                         91.92      92.58      92.25      29623
    , (label_id: 3)                                         73.07      82.04      77.30      26432
    ? (label_id: 4)                                         49.44      71.84      58.57       1218
    ? (label_id: 5)                                          0.00       0.00       0.00          0
    , (label_id: 6)                                          0.00       0.00       0.00          0
    。 (label_id: 7)                                          0.00       0.00       0.00          0
    、 (label_id: 8)                                          0.00       0.00       0.00          0
    ・ (label_id: 9)                                          0.00       0.00       0.00          0
    । (label_id: 10)                                         0.00       0.00       0.00          0
    ؟ (label_id: 11)                                         0.00       0.00       0.00          0
    ، (label_id: 12)                                         0.00       0.00       0.00          0
    ; (label_id: 13)                                         0.00       0.00       0.00          0
    ። (label_id: 14)                                         0.00       0.00       0.00          0
    ፣ (label_id: 15)                                         0.00       0.00       0.00          0
    ፧ (label_id: 16)                                         0.00       0.00       0.00          0
    -------------------
    micro avg                                               97.39      97.39      97.39     610421
    macro avg                                               67.39      77.73      71.47     610421
    weighted avg                                            97.58      97.39      97.47     610421
```

```text
cap test report: 
    label                                                precision    recall       f1           support   
    LOWER (label_id: 0)                                     99.82      99.86      99.84    2222062
    UPPER (label_id: 1)                                     95.96      94.64      95.29      75940
    -------------------
    micro avg                                               99.69      99.69      99.69    2298002
    macro avg                                               97.89      97.25      97.57    2298002
    weighted avg                                            99.69      99.69      99.69    2298002
```

```text
seg test report: 
    label                                                precision    recall       f1           support   
    NOSTOP (label_id: 0)                                    99.99      99.97      99.98     580519
    FULLSTOP (label_id: 1)                                  99.52      99.81      99.66      32902
    -------------------
    micro avg                                               99.96      99.96      99.96     613421
    macro avg                                               99.75      99.89      99.82     613421
    weighted avg                                            99.96      99.96      99.96     613421
```

</details>


<details>
  <summary>Amharic</summary>
  
```text
punct_post test report: 
    label                                                precision    recall       f1           support   
    <NULL> (label_id: 0)                                    99.81      99.40      99.60     729695
    <ACRONYM> (label_id: 1)                                  0.00       0.00       0.00          0
    . (label_id: 2)                                          0.00       0.00       0.00          0
    , (label_id: 3)                                          0.00       0.00       0.00          0
    ? (label_id: 4)                                          0.00       0.00       0.00          0
    ? (label_id: 5)                                          0.00       0.00       0.00          0
    , (label_id: 6)                                          0.00       0.00       0.00          0
    。 (label_id: 7)                                          0.00       0.00       0.00          0
    、 (label_id: 8)                                          0.00       0.00       0.00          0
    ・ (label_id: 9)                                          0.00       0.00       0.00          0
    । (label_id: 10)                                         0.00       0.00       0.00          0
    ؟ (label_id: 11)                                         0.00       0.00       0.00          0
    ، (label_id: 12)                                         0.00       0.00       0.00          0
    ; (label_id: 13)                                         0.00       0.00       0.00          0
    ። (label_id: 14)                                        91.44      97.78      94.50      25288
    ፣ (label_id: 15)                                        66.93      80.45      73.07       5774
    ፧ (label_id: 16)                                        72.14      77.01      74.49       1170
    -------------------
    micro avg                                               99.17      99.17      99.17     761927
    macro avg                                               82.58      88.66      85.42     761927
    weighted avg                                            99.24      99.17      99.19     761927
```

```text
cap test report: 
    label                                                precision    recall       f1           support   
    LOWER (label_id: 0)                                     98.50      97.22      97.86       1150
    UPPER (label_id: 1)                                     56.16      70.69      62.60         58
    -------------------
    micro avg                                               95.94      95.94      95.94       1208
    macro avg                                               77.33      83.95      80.23       1208
    weighted avg                                            96.47      95.94      96.16       1208
```

```text
seg test report: 
    label                                                precision    recall       f1           support   
    NOSTOP (label_id: 0)                                    99.97      99.91      99.94     743103
    FULLSTOP (label_id: 1)                                  97.16      99.04      98.09      21824
    -------------------
    micro avg                                               99.89      99.89      99.89     764927
    macro avg                                               98.57      99.48      99.02     764927
    weighted avg                                            99.89      99.89      99.89     764927
```

</details>


<details>
  <summary>Chinese</summary>

```text
punct_post test report: 
    label                                                precision    recall       f1           support   
    <NULL> (label_id: 0)                                    99.47      97.46      98.45     414383
    <ACRONYM> (label_id: 1)                                  0.00       0.00       0.00          0
    . (label_id: 2)                                          0.00       0.00       0.00          0
    , (label_id: 3)                                          0.00       0.00       0.00          0
    ? (label_id: 4)                                          0.00       0.00       0.00          0
    ? (label_id: 5)                                         81.41      85.80      83.55       1444
    , (label_id: 6)                                         74.93      92.79      82.91      34094
    。 (label_id: 7)                                         96.35      96.86      96.60      30668
    、 (label_id: 8)                                          0.00       0.00       0.00          0
    ・ (label_id: 9)                                          0.00       0.00       0.00          0
    । (label_id: 10)                                         0.00       0.00       0.00          0
    ؟ (label_id: 11)                                         0.00       0.00       0.00          0
    ، (label_id: 12)                                         0.00       0.00       0.00          0
    ; (label_id: 13)                                         0.00       0.00       0.00          0
    ። (label_id: 14)                                         0.00       0.00       0.00          0
    ፣ (label_id: 15)                                         0.00       0.00       0.00          0
    ፧ (label_id: 16)                                         0.00       0.00       0.00          0
    -------------------
    micro avg                                               97.05      97.05      97.05     480589
    macro avg                                               88.04      93.23      90.38     480589
    weighted avg                                            97.47      97.05      97.19     480589
```

```text
cap test report: 
    label                                                precision    recall       f1           support   
    LOWER (label_id: 0)                                     94.82      93.97      94.39       2786
    UPPER (label_id: 1)                                     79.23      81.76      80.48        784
    -------------------
    micro avg                                               91.29      91.29      91.29       3570
    macro avg                                               87.03      87.87      87.44       3570
    weighted avg                                            91.40      91.29      91.34       3570
```

```text
seg test report: 
    label                                                precision    recall       f1           support   
    NOSTOP (label_id: 0)                                    99.99      99.98      99.98     450589
    FULLSTOP (label_id: 1)                                  99.75      99.81      99.78      33000
    -------------------
    micro avg                                               99.97      99.97      99.97     483589
    macro avg                                               99.87      99.89      99.88     483589
    weighted avg                                            99.97      99.97      99.97     483589
```
  
</details>


<details>
  <summary>Japanese</summary>

```text
punct_post test report: 
    label                                                precision    recall       f1           support   
    <NULL> (label_id: 0)                                    99.32      95.84      97.55     387103
    <ACRONYM> (label_id: 1)                                  0.00       0.00       0.00          0
    . (label_id: 2)                                          0.00       0.00       0.00          0
    , (label_id: 3)                                          0.00       0.00       0.00          0
    ? (label_id: 4)                                          0.00       0.00       0.00          0
    ? (label_id: 5)                                         75.12      68.14      71.46       1378
    , (label_id: 6)                                          0.00       0.00       0.00          0
    。 (label_id: 7)                                         93.30      97.44      95.33      31110
    、 (label_id: 8)                                         53.91      87.52      66.72      17710
    ・ (label_id: 9)                                         29.33      64.60      40.35       1048
    । (label_id: 10)                                         0.00       0.00       0.00          0
    ؟ (label_id: 11)                                         0.00       0.00       0.00          0
    ، (label_id: 12)                                         0.00       0.00       0.00          0
    ; (label_id: 13)                                         0.00       0.00       0.00          0
    ። (label_id: 14)                                         0.00       0.00       0.00          0
    ፣ (label_id: 15)                                         0.00       0.00       0.00          0
    ፧ (label_id: 16)                                         0.00       0.00       0.00          0
    -------------------
    micro avg                                               95.46      95.46      95.46     438349
    macro avg                                               70.20      82.71      74.28     438349
    weighted avg                                            96.81      95.46      95.93     438349
```
      
```text
cap test report: 
    label                                                precision    recall       f1           support   
    LOWER (label_id: 0)                                     92.64      92.67      92.65       4036
    UPPER (label_id: 1)                                     80.75      80.70      80.73       1539
    -------------------
    micro avg                                               89.36      89.36      89.36       5575
    macro avg                                               86.70      86.68      86.69       5575
    weighted avg                                            89.36      89.36      89.36       5575
```

```text
seg test report: 
    label                                                precision    recall       f1           support   
    NOSTOP (label_id: 0)                                    99.98      99.95      99.97     408349
    FULLSTOP (label_id: 1)                                  99.36      99.78      99.57      33000
    -------------------
    micro avg                                               99.94      99.94      99.94     441349
    macro avg                                               99.67      99.86      99.77     441349
    weighted avg                                            99.94      99.94      99.94     441349
```

</details>


<details>
  <summary>Hindi</summary>
  
```text
punct_post test report: 
    label                                                precision    recall       f1           support   
    <NULL> (label_id: 0)                                    99.73      99.47      99.60     533761
    <ACRONYM> (label_id: 1)                                  0.00       0.00       0.00          0
    . (label_id: 2)                                          0.00       0.00       0.00          0
    , (label_id: 3)                                         70.69      76.48      73.47       7713
    ? (label_id: 4)                                         65.41      74.75      69.77        301
    ? (label_id: 5)                                          0.00       0.00       0.00          0
    , (label_id: 6)                                          0.00       0.00       0.00          0
    。 (label_id: 7)                                          0.00       0.00       0.00          0
    、 (label_id: 8)                                          0.00       0.00       0.00          0
    ・ (label_id: 9)                                          0.00       0.00       0.00          0
    । (label_id: 10)                                        96.46      98.81      97.62      30641
    ؟ (label_id: 11)                                         0.00       0.00       0.00          0
    ، (label_id: 12)                                         0.00       0.00       0.00          0
    ; (label_id: 13)                                         0.00       0.00       0.00          0
    ። (label_id: 14)                                         0.00       0.00       0.00          0
    ፣ (label_id: 15)                                         0.00       0.00       0.00          0
    ፧ (label_id: 16)                                         0.00       0.00       0.00          0
    -------------------
    micro avg                                               99.11      99.11      99.11     572416
    macro avg                                               83.07      87.38      85.11     572416
    weighted avg                                            99.15      99.11      99.13     572416
```
      
```text
cap test report: 
    label                                                precision    recall       f1           support   
    LOWER (label_id: 0)                                     97.46      96.50      96.98       2346
    UPPER (label_id: 1)                                     89.01      91.84      90.40        723
    -------------------
    micro avg                                               95.41      95.41      95.41       3069
    macro avg                                               93.23      94.17      93.69       3069
    weighted avg                                            95.47      95.41      95.43       3069
```

```text
seg test report: 
    label                                                precision    recall       f1           support   
    NOSTOP (label_id: 0)                                   100.00     100.00     100.00     542437
    FULLSTOP (label_id: 1)                                  99.92      99.97      99.95      32979
    -------------------
    micro avg                                               99.99      99.99      99.99     575416
    macro avg                                               99.96      99.98      99.97     575416
    weighted avg                                            99.99      99.99      99.99     575416
```
  
</details>