File size: 29,953 Bytes
47bbd43 2d25caf f9f8143 2d25caf 47bbd43 2d25caf c502d01 2d25caf b629ea4 2d25caf 7978b81 5f92894 7978b81 2d25caf 26abccc 2d25caf 33d9157 2d25caf 26abccc 2d25caf 33d9157 2d25caf 33d9157 2d25caf fb9b987 2d25caf be0893f 3c7b25f 5548a75 0dc2ad3 2d25caf cad4273 2d25caf cad4273 2d25caf cad4273 9d43877 2d25caf cad4273 2d25caf a392f9c 0dc2ad3 9d43877 ec66215 9d43877 70fe7b5 9d43877 70fe7b5 9d43877 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
---
license: apache-2.0
library_name: generic
tags:
- text2text-generation
- punctuation
- sentence-boundary-detection
- truecasing
- true-casing
language:
- af
- am
- ar
- bg
- bn
- de
- el
- en
- es
- et
- fa
- fi
- fr
- gu
- hi
- hr
- hu
- id
- is
- it
- ja
- kk
- kn
- ko
- ky
- lt
- lv
- mk
- ml
- mr
- nl
- or
- pa
- pl
- ps
- pt
- ro
- ru
- rw
- so
- sr
- sw
- ta
- te
- tr
- uk
- zh
---
# Model Overview
This is an `xlm-roberta` fine-tuned to restore punctuation, true-case (capitalize),
and detect sentence boundaries (full stops) in 47 languages.
# Model Architecture
This model implements the following graph, which allows punctuation, true-casing, and fullstop prediction
in every language without language-specific behavior:
![graph.png](https://s3.amazonaws.com/moonup/production/uploads/62d34c813eebd640a4f97587/jpr-pMdv6iHxnjbN4QNt0.png)
We start by tokenizing the text and encoding it with XLM-Roberta, which is the pre-trained portion of this graph.
Then we predict punctuation before and after every subtoken.
Predicting before each token allows for Spanish inverted question marks.
Predicting after every token allows for all other punctuation, including punctuation within continuous-script
languages and acronyms.
We use embeddings to represent the predicted punctuation tokens to inform the sentence boundary head of the
punctuation that'll be inserted into the text. This allows proper full stop prediction, since certain punctuation
tokens (periods, questions marks, etc.) are strongly correlated with sentence boundaries.
We then shift full stop predictions to the right by one, to inform the true-casing head of where the beginning
of each new sentence is. This is important since true-casing is strongly correlated to sentence boundaries.
For true-casing, we predict `N` predictions per subtoken, where `N` is the number of characters in the subtoken.
In practice, `N` is the maximum subtoken length and extra predictions are ignored. Essentially, true-casing is
modeled as a multi-label problem. This allows for upper-casing arbitrary characters, e.g., "NATO", "MacDonald", "mRNA", etc.
Applying all these predictions to the input text, we can punctuate, true-case, and split sentences in any language.
## Tokenizer
Instead of the hacky wrapper used by FairSeq and strangely ported (not fixed) by HuggingFace, the xlm-roberta SentencePiece model was adjusted to correctly encode
the text. Per HF's comments,
```python
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
```
The SP model was un-hacked with the following snippet
(SentencePiece experts, let me know if there is a problem here):
```python
from sentencepiece import SentencePieceProcessor
from sentencepiece.sentencepiece_model_pb2 import ModelProto
m = ModelProto()
m.ParseFromString(open("/path/to/xlmroberta/sentencepiece.bpe.model", "rb").read())
pieces = list(m.pieces)
pieces = (
[
ModelProto.SentencePiece(piece="<s>", type=ModelProto.SentencePiece.Type.CONTROL),
ModelProto.SentencePiece(piece="<pad>", type=ModelProto.SentencePiece.Type.CONTROL),
ModelProto.SentencePiece(piece="</s>", type=ModelProto.SentencePiece.Type.CONTROL),
ModelProto.SentencePiece(piece="<unk>", type=ModelProto.SentencePiece.Type.UNKNOWN),
]
+ pieces[3:]
+ [ModelProto.SentencePiece(piece="<mask>", type=ModelProto.SentencePiece.Type.USER_DEFINED)]
)
del m.pieces[:]
m.pieces.extend(pieces)
with open("/path/to/new/sp.model", "wb") as f:
f.write(m.SerializeToString())
```
## Post-Punctuation Tokens
This model predicts the following set of punctuation tokens after each subtoken:
| Token | Description | Relevant Languages |
| ---: | :---------- | :----------- |
| \<NULL\> | No punctuation | All |
| \<ACRONYM\> | Every character in this subword is followed by a period | Primarily English, some European |
| . | Latin full stop | Many |
| , | Latin comma | Many |
| ? | Latin question mark | Many |
| ? | Full-width question mark | Chinese, Japanese |
| , | Full-width comma | Chinese, Japanese |
| 。 | Full-width full stop | Chinese, Japanese |
| 、 | Ideographic comma | Chinese, Japanese |
| ・ | Middle dot | Japanese |
| । | Danda | Hindi, Bengali, Oriya |
| ؟ | Arabic question mark | Arabic |
| ; | Greek question mark | Greek |
| ። | Ethiopic full stop | Amharic |
| ፣ | Ethiopic comma | Amharic |
| ፧ | Ethiopic question mark | Amharic |
## Pre-Punctuation Tokens
This model predicts the following set of punctuation tokens before each subword:
| Token | Description | Relevant Languages |
| ---: | :---------- | :----------- |
| \<NULL\> | No punctuation | All |
| ¿ | Inverted question mark | Spanish |
# Training Details
This model was trained in the NeMo framework.
This model was trained on an A100 for slightly longer than 7 hours.
For validation and train metrics, see the [Tensorboard Logs](https://tensorboard.dev/experiment/xxnULI1aTeK37vUDL4ejiw/).
## Training Data
This model was trained with News Crawl data from WMT.
1M lines of text for each language was used, except for a few low-resource languages which may have used less.
Languages were chosen based on whether the News Crawl corpus contained enough reliable-quality data as judged by the author.
# Limitations
This model was trained on news data, and may not perform well on conversational or informal data.
Further, this model is unlikely to be of production quality.
It was trained with "only" 1M lines per language, and the dev sets may have been noisy due to the nature of web-scraped news data.
This model over-predicts Spanish question marks, especially the inverted question mark `¿` (see metrics below).
Since `¿` is a rare token, especially in the
context of a 47-language model, Spanish questions were over-sampled by selecting more of these sentences from
additional training data that was not used. However, this seems to have "over-corrected" the problem and a lot
of Spanish question marks are predicted. This can be fixed by exposing prior probabilities, but I'll fine-tune
it later to fix this the right way.
# Evaluation
In these metrics, keep in mind that
1. The data is noisy
2. Sentence boundaries and true-casing are conditioned on predicted punctuation, which is the most difficult task and sometimes incorrect.
When conditioning on reference punctuation, true-casing and SBD is practically 100% for most languages.
4. Punctuation can be subjective. E.g.,
`Hola mundo, ¿cómo estás?`
or
`Hola mundo. ¿Cómo estás?`
When the sentences are longer and more practical, these ambiguities abound and affect all 3 analytics.
## Test Data and Example Generation
Each test example was generated using the following procedure:
1. Concatenate 11 random sentences (1 + 10 for each sentence in the test set)
2. Lower-case the concatenated sentence
3. Remove all punctuation
The data is a held-out portion of News Crawl, which has been deduplicated.
3,000 lines of data per language was used, generating 3,000 unique examples of 11 sentences each.
We generate 3,000 examples, where example `i` begins with sentence `i` and is followed by 10 random
sentences selected from the 3,000 sentence test set.
## Selected Language Evaluation Reports
For now, metrics for a few selected languages are shown below.
Given the amount of work required to collect and pretty-print metrics in 47 languages, I'll add more eventually.
Expand any of the following tabs to see metrics for that language.
<details>
<summary>English</summary>
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.18 98.47 98.82 538769
<ACRONYM> (label_id: 1) 66.03 78.63 71.78 571
. (label_id: 2) 90.66 93.68 92.14 30581
, (label_id: 3) 74.18 82.93 78.31 23230
? (label_id: 4) 78.10 80.08 79.07 1024
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 97.56 97.56 97.56 594175
macro avg 81.63 86.76 84.03 594175
weighted avg 97.70 97.56 97.62 594175
```
```text
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 99.71 99.85 99.78 2036824
UPPER (label_id: 1) 96.40 93.27 94.81 87747
-------------------
micro avg 99.58 99.58 99.58 2124571
macro avg 98.06 96.56 97.30 2124571
weighted avg 99.57 99.58 99.58 2124571
```
```text
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.97 99.98 99.98 564228
FULLSTOP (label_id: 1) 99.73 99.54 99.64 32947
-------------------
micro avg 99.96 99.96 99.96 597175
macro avg 99.85 99.76 99.81 597175
weighted avg 99.96 99.96 99.96 597175
```
</details>
<details>
<summary>Spanish</summary>
```text
punct_pre test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.96 99.76 99.86 609200
¿ (label_id: 1) 39.66 77.89 52.56 1221
-------------------
micro avg 99.72 99.72 99.72 610421
macro avg 69.81 88.82 76.21 610421
weighted avg 99.83 99.72 99.76 610421
```
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.17 98.44 98.80 553100
<ACRONYM> (label_id: 1) 23.33 43.75 30.43 48
. (label_id: 2) 91.92 92.58 92.25 29623
, (label_id: 3) 73.07 82.04 77.30 26432
? (label_id: 4) 49.44 71.84 58.57 1218
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 97.39 97.39 97.39 610421
macro avg 67.39 77.73 71.47 610421
weighted avg 97.58 97.39 97.47 610421
```
```text
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 99.82 99.86 99.84 2222062
UPPER (label_id: 1) 95.96 94.64 95.29 75940
-------------------
micro avg 99.69 99.69 99.69 2298002
macro avg 97.89 97.25 97.57 2298002
weighted avg 99.69 99.69 99.69 2298002
```
```text
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.99 99.97 99.98 580519
FULLSTOP (label_id: 1) 99.52 99.81 99.66 32902
-------------------
micro avg 99.96 99.96 99.96 613421
macro avg 99.75 99.89 99.82 613421
weighted avg 99.96 99.96 99.96 613421
```
</details>
<details>
<summary>Amharic</summary>
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.81 99.40 99.60 729695
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 0.00 0.00 0.00 0
? (label_id: 4) 0.00 0.00 0.00 0
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 91.44 97.78 94.50 25288
፣ (label_id: 15) 66.93 80.45 73.07 5774
፧ (label_id: 16) 72.14 77.01 74.49 1170
-------------------
micro avg 99.17 99.17 99.17 761927
macro avg 82.58 88.66 85.42 761927
weighted avg 99.24 99.17 99.19 761927
```
```text
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 98.50 97.22 97.86 1150
UPPER (label_id: 1) 56.16 70.69 62.60 58
-------------------
micro avg 95.94 95.94 95.94 1208
macro avg 77.33 83.95 80.23 1208
weighted avg 96.47 95.94 96.16 1208
```
```text
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.97 99.91 99.94 743103
FULLSTOP (label_id: 1) 97.16 99.04 98.09 21824
-------------------
micro avg 99.89 99.89 99.89 764927
macro avg 98.57 99.48 99.02 764927
weighted avg 99.89 99.89 99.89 764927
```
</details>
<details>
<summary>Chinese</summary>
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.47 97.46 98.45 414383
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 0.00 0.00 0.00 0
? (label_id: 4) 0.00 0.00 0.00 0
? (label_id: 5) 81.41 85.80 83.55 1444
, (label_id: 6) 74.93 92.79 82.91 34094
。 (label_id: 7) 96.35 96.86 96.60 30668
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 97.05 97.05 97.05 480589
macro avg 88.04 93.23 90.38 480589
weighted avg 97.47 97.05 97.19 480589
```
```text
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 94.82 93.97 94.39 2786
UPPER (label_id: 1) 79.23 81.76 80.48 784
-------------------
micro avg 91.29 91.29 91.29 3570
macro avg 87.03 87.87 87.44 3570
weighted avg 91.40 91.29 91.34 3570
```
```text
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.99 99.98 99.98 450589
FULLSTOP (label_id: 1) 99.75 99.81 99.78 33000
-------------------
micro avg 99.97 99.97 99.97 483589
macro avg 99.87 99.89 99.88 483589
weighted avg 99.97 99.97 99.97 483589
```
</details>
<details>
<summary>Japanese</summary>
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.32 95.84 97.55 387103
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 0.00 0.00 0.00 0
? (label_id: 4) 0.00 0.00 0.00 0
? (label_id: 5) 75.12 68.14 71.46 1378
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 93.30 97.44 95.33 31110
、 (label_id: 8) 53.91 87.52 66.72 17710
・ (label_id: 9) 29.33 64.60 40.35 1048
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 95.46 95.46 95.46 438349
macro avg 70.20 82.71 74.28 438349
weighted avg 96.81 95.46 95.93 438349
```
```text
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 92.64 92.67 92.65 4036
UPPER (label_id: 1) 80.75 80.70 80.73 1539
-------------------
micro avg 89.36 89.36 89.36 5575
macro avg 86.70 86.68 86.69 5575
weighted avg 89.36 89.36 89.36 5575
```
```text
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.98 99.95 99.97 408349
FULLSTOP (label_id: 1) 99.36 99.78 99.57 33000
-------------------
micro avg 99.94 99.94 99.94 441349
macro avg 99.67 99.86 99.77 441349
weighted avg 99.94 99.94 99.94 441349
```
</details>
<details>
<summary>Hindi</summary>
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.73 99.47 99.60 533761
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 70.69 76.48 73.47 7713
? (label_id: 4) 65.41 74.75 69.77 301
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 96.46 98.81 97.62 30641
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 99.11 99.11 99.11 572416
macro avg 83.07 87.38 85.11 572416
weighted avg 99.15 99.11 99.13 572416
```
```text
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 97.46 96.50 96.98 2346
UPPER (label_id: 1) 89.01 91.84 90.40 723
-------------------
micro avg 95.41 95.41 95.41 3069
macro avg 93.23 94.17 93.69 3069
weighted avg 95.47 95.41 95.43 3069
```
```text
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 100.00 100.00 100.00 542437
FULLSTOP (label_id: 1) 99.92 99.97 99.95 32979
-------------------
micro avg 99.99 99.99 99.99 575416
macro avg 99.96 99.98 99.97 575416
weighted avg 99.99 99.99 99.99 575416
```
</details>
|