File size: 43,403 Bytes
47bbd43 2d25caf f9f8143 2d25caf 362aa25 47bbd43 2d25caf c502d01 2d25caf c69ed9f 51e39b8 aaf2e06 e270816 aaf2e06 d44eb1a aaf2e06 d44eb1a aaf2e06 d44eb1a aaf2e06 b629ea4 2d25caf 7978b81 dc7df76 7978b81 5f92894 7978b81 dc7df76 2d25caf 26abccc 2d25caf 33d9157 2d25caf 26abccc 2d25caf 33d9157 2d25caf 33d9157 2d25caf 8d75e5b 2d25caf fc68459 affeb69 2d25caf affeb69 2d25caf be0893f 3c7b25f dc7df76 2d25caf 8d75e5b 2d25caf cad4273 2d25caf dc7df76 2d25caf cad4273 2d25caf dc7df76 2d25caf cad4273 9d43877 2d25caf cad4273 2d25caf a392f9c dc7df76 a392f9c dc7df76 a392f9c dc7df76 a392f9c dc7df76 a392f9c dc7df76 a392f9c dc7df76 a392f9c dc7df76 a392f9c dc7df76 a392f9c 0dc2ad3 dc7df76 0dc2ad3 dc7df76 0dc2ad3 dc7df76 0dc2ad3 dc7df76 0dc2ad3 dc7df76 0dc2ad3 dc7df76 0dc2ad3 dc7df76 0dc2ad3 dc7df76 0dc2ad3 dc7df76 0dc2ad3 dc7df76 0dc2ad3 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 dc7df76 9d43877 ec66215 dc7df76 ec66215 dc7df76 ec66215 dc7df76 ec66215 dc7df76 ec66215 dc7df76 ec66215 dc7df76 ec66215 dc7df76 ec66215 dc7df76 ec66215 dc7df76 ec66215 9d43877 70fe7b5 dc7df76 70fe7b5 dc7df76 70fe7b5 dc7df76 70fe7b5 dc7df76 70fe7b5 dc7df76 70fe7b5 dc7df76 70fe7b5 dc7df76 9d43877 70fe7b5 dc7df76 70fe7b5 dc7df76 70fe7b5 dc7df76 70fe7b5 9d43877 1d4fc79 c69ed9f 1d4fc79 c69ed9f 1d4fc79 5ef7279 1d4fc79 c69ed9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 |
---
license: apache-2.0
library_name: generic
tags:
- text2text-generation
- punctuation
- sentence-boundary-detection
- truecasing
- true-casing
language:
- af
- am
- ar
- bg
- bn
- de
- el
- en
- es
- et
- fa
- fi
- fr
- gu
- hi
- hr
- hu
- id
- is
- it
- ja
- kk
- kn
- ko
- ky
- lt
- lv
- mk
- ml
- mr
- nl
- or
- pa
- pl
- ps
- pt
- ro
- ru
- rw
- so
- sr
- sw
- ta
- te
- tr
- uk
- zh
widget:
- text: "hola amigo cómo estás es un día lluvioso hoy"
- text: "please rsvp for the party asap preferably before 8 pm tonight"
- text: "este modelo fue entrenado en un gpu a100 en realidad no se que dice esta frase lo traduje con nmt"
- text: "此模型向文本添加标点符号它支持47种语言并在a100gpu上接受过训练它可以在每种语言上运行而无需每种语言的特殊路径"
- text: "यह मॉडल 47 भाषाओं में विराम चिह्न जोड़ता है यह भाषा विशिष्ट पथ के बिना काम करता है यह प्रत्येक भाषा के लिए विशेष पथों के बिना प्रत्येक भाषा पर कार्य कर सकता है"
---
# Model Overview
This is an `xlm-roberta` fine-tuned to restore punctuation, true-case (capitalize),
and detect sentence boundaries (full stops) in 47 languages.
Note that the widget may not be working yet; HF requires models to be public before allowing the widget to run,
so it cannot be tested before making it publicly available.
# Usage
The easiest way to use this model is to install [punctuators](https://github.com/1-800-BAD-CODE/punctuators):
```bash
$ pip install punctuators
```
But this is just an ONNX and SentencePiece model, so you may run it as you wish.
The input to the `punctuators` API is a list (batch) of strings.
Each string will be punctuated, true-cased, and segmented on predicted full stops.
The output will therefore be a list of list of strings: one list of segmented sentences per input text.
To disable full stops, use `m.infer(texts, apply_sbd=False)`.
The output will then be a list of strings: one punctuated, true-cased string per input text.
<details open>
<summary>Example Usage</summary>
```python
from typing import List
from punctuators.models import PunctCapSegModelONNX
m: PunctCapSegModelONNX = PunctCapSegModelONNX.from_pretrained(
"1-800-BAD-CODE/xlm-roberta_punctuation_fullstop_truecase"
)
input_texts: List[str] = [
"hola mundo cómo estás estamos bajo el sol y hace mucho calor santa coloma abre los huertos urbanos a las escuelas de la ciudad",
"hello friend how's it going it's snowing outside right now in connecticut a large storm is moving in",
"未來疫苗將有望覆蓋3歲以上全年齡段美國與北約軍隊已全部撤離還有鐵路公路在內的各項基建的來源都將枯竭",
"በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል",
"こんにちは友人" "調子はどう" "今日は雨の日でしたね" "乾いた状態を保つために一日中室内で過ごしました",
"hallo freund wie geht's es war heute ein regnerischer tag nicht wahr ich verbrachte den tag drinnen um trocken zu bleiben",
"हैलो दोस्त ये कैसा चल रहा है आज बारिश का दिन था न मैंने सूखा रहने के लिए दिन घर के अंदर बिताया",
"كيف تجري الامور كان يومًا ممطرًا اليوم أليس كذلك قضيت اليوم في الداخل لأظل جافًا",
]
results: List[List[str]] = m.infer(
texts=input_texts, apply_sbd=True,
)
for input_text, output_texts in zip(input_texts, results):
print(f"Input: {input_text}")
print(f"Outputs:")
for text in output_texts:
print(f"\t{text}")
print()
```
</details>
<details open>
<summary>Expected output</summary>
```text
Input: hola mundo cómo estás estamos bajo el sol y hace mucho calor santa coloma abre los huertos urbanos a las escuelas de la ciudad
Outputs:
Hola mundo, ¿cómo estás?
Estamos bajo el sol y hace mucho calor.
Santa Coloma abre los huertos urbanos a las escuelas de la ciudad.
Input: hello friend how's it going it's snowing outside right now in connecticut a large storm is moving in
Outputs:
Hello friend, how's it going?
It's snowing outside right now.
In Connecticut, a large storm is moving in.
Input: 未來疫苗將有望覆蓋3歲以上全年齡段美國與北約軍隊已全部撤離還有鐵路公路在內的各項基建的來源都將枯竭
Outputs:
未來,疫苗將有望覆蓋3歲以上全年齡段。
美國與北約軍隊已全部撤離。
還有,鐵路,公路在內的各項基建的來源都將枯竭。
Input: በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል
Outputs:
በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር።
ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል።
Input: こんにちは友人調子はどう今日は雨の日でしたね乾いた状態を保つために一日中室内で過ごしました
Outputs:
こんにちは、友人、調子はどう?
今日は雨の日でしたね。
乾いた状態を保つために、一日中、室内で過ごしました。
Input: hallo freund wie geht's es war heute ein regnerischer tag nicht wahr ich verbrachte den tag drinnen um trocken zu bleiben
Outputs:
Hallo Freund, wie geht's?
Es war heute ein regnerischer Tag, nicht wahr?
Ich verbrachte den Tag drinnen, um trocken zu bleiben.
Input: हैलो दोस्त ये कैसा चल रहा है आज बारिश का दिन था न मैंने सूखा रहने के लिए दिन घर के अंदर बिताया
Outputs:
हैलो दोस्त, ये कैसा चल रहा है?
आज बारिश का दिन था न, मैंने सूखा रहने के लिए दिन घर के अंदर बिताया।
Input: كيف تجري الامور كان يومًا ممطرًا اليوم أليس كذلك قضيت اليوم في الداخل لأظل جافًا
Outputs:
كيف تجري الامور؟
كان يومًا ممطرًا اليوم، أليس كذلك؟
قضيت اليوم في الداخل لأظل جافًا.
```
</details>
# Model Architecture
This model implements the following graph, which allows punctuation, true-casing, and fullstop prediction
in every language without language-specific behavior:
![graph.png](https://s3.amazonaws.com/moonup/production/uploads/62d34c813eebd640a4f97587/jpr-pMdv6iHxnjbN4QNt0.png)
We start by tokenizing the text and encoding it with XLM-Roberta, which is the pre-trained portion of this graph.
Then we predict punctuation before and after every subtoken.
Predicting before each token allows for Spanish inverted question marks.
Predicting after every token allows for all other punctuation, including punctuation within continuous-script
languages and acronyms.
We use embeddings to represent the predicted punctuation tokens to inform the sentence boundary head of the
punctuation that'll be inserted into the text. This allows proper full stop prediction, since certain punctuation
tokens (periods, questions marks, etc.) are strongly correlated with sentence boundaries.
We then shift full stop predictions to the right by one, to inform the true-casing head of where the beginning
of each new sentence is. This is important since true-casing is strongly correlated to sentence boundaries.
For true-casing, we predict `N` predictions per subtoken, where `N` is the number of characters in the subtoken.
In practice, `N` is the maximum subtoken length and extra predictions are ignored. Essentially, true-casing is
modeled as a multi-label problem. This allows for upper-casing arbitrary characters, e.g., "NATO", "MacDonald", "mRNA", etc.
Applying all these predictions to the input text, we can punctuate, true-case, and split sentences in any language.
## Tokenizer
Instead of the hacky wrapper used by FairSeq and strangely ported (not fixed) by HuggingFace, the `xlm-roberta` SentencePiece model was adjusted to correctly encode
the text. Per HF's comments,
```python
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
```
The SP model was un-hacked with the following snippet
(SentencePiece experts, let me know if there is a problem here):
```python
from sentencepiece import SentencePieceProcessor
from sentencepiece.sentencepiece_model_pb2 import ModelProto
m = ModelProto()
m.ParseFromString(open("/path/to/xlmroberta/sentencepiece.bpe.model", "rb").read())
pieces = list(m.pieces)
pieces = (
[
ModelProto.SentencePiece(piece="<s>", type=ModelProto.SentencePiece.Type.CONTROL),
ModelProto.SentencePiece(piece="<pad>", type=ModelProto.SentencePiece.Type.CONTROL),
ModelProto.SentencePiece(piece="</s>", type=ModelProto.SentencePiece.Type.CONTROL),
ModelProto.SentencePiece(piece="<unk>", type=ModelProto.SentencePiece.Type.UNKNOWN),
]
+ pieces[3:]
+ [ModelProto.SentencePiece(piece="<mask>", type=ModelProto.SentencePiece.Type.USER_DEFINED)]
)
del m.pieces[:]
m.pieces.extend(pieces)
with open("/path/to/new/sp.model", "wb") as f:
f.write(m.SerializeToString())
```
Now we can use just the SP model without a wrapper.
## Post-Punctuation Tokens
This model predicts the following set of punctuation tokens after each subtoken:
| Token | Description | Relevant Languages |
| ---: | :---------- | :----------- |
| \<NULL\> | No punctuation | All |
| \<ACRONYM\> | Every character in this subword is followed by a period | Primarily English, some European |
| . | Latin full stop | Many |
| , | Latin comma | Many |
| ? | Latin question mark | Many |
| ? | Full-width question mark | Chinese, Japanese |
| , | Full-width comma | Chinese, Japanese |
| 。 | Full-width full stop | Chinese, Japanese |
| 、 | Ideographic comma | Chinese, Japanese |
| ・ | Middle dot | Japanese |
| । | Danda | Hindi, Bengali, Oriya |
| ؟ | Arabic question mark | Arabic |
| ; | Greek question mark | Greek |
| ። | Ethiopic full stop | Amharic |
| ፣ | Ethiopic comma | Amharic |
| ፧ | Ethiopic question mark | Amharic |
## Pre-Punctuation Tokens
This model predicts the following set of punctuation tokens before each subword:
| Token | Description | Relevant Languages |
| ---: | :---------- | :----------- |
| \<NULL\> | No punctuation | All |
| ¿ | Inverted question mark | Spanish |
# Training Details
This model was trained in the NeMo framework on an A100 for approximately 9 hours.
This model was trained with News Crawl data from WMT.
1M lines of text for each language was used, except for a few low-resource languages which may have used less.
Languages were chosen based on whether the News Crawl corpus contained enough reliable-quality data as judged by the author.
# Limitations
This model was trained on news data, and may not perform well on conversational or informal data.
This model is unlikely to be of production quality.
It was trained with "only" 1M lines per language, and the dev sets may have been noisy due to the nature of web-scraped news data.
This model over-predicts Spanish question marks, especially the inverted question mark `¿` (see metrics below).
Since `¿` is a rare token, especially in the context of a 47-language model, Spanish questions were over-sampled
by selecting more of these sentences from additional training data that was not used. However, this seems to have
"over-corrected" the problem and a lot of Spanish question marks are predicted.
The model may also over-predict commas.
If you find any general limitations not mentioned here, let me know so all limitations can be addressed in the
next fine-tuning.
# Evaluation
In these metrics, keep in mind that
1. The data is noisy
2. Sentence boundaries and true-casing are conditioned on predicted punctuation, which is the most difficult task and sometimes incorrect.
When conditioning on reference punctuation, true-casing and SBD is practically 100% for most languages.
4. Punctuation can be subjective. E.g.,
`Hola mundo, ¿cómo estás?`
or
`Hola mundo. ¿Cómo estás?`
When the sentences are longer and more practical, these ambiguities abound and affect all 3 analytics.
## Test Data and Example Generation
Each test example was generated using the following procedure:
1. Concatenate 11 random sentences (1 + 10 for each sentence in the test set)
2. Lower-case the concatenated sentence
3. Remove all punctuation
Targets are generated as we lower-case letters and remove punctuation.
The data is a held-out portion of News Crawl, which has been deduplicated.
3,000 lines of data per language was used, generating 3,000 unique examples of 11 sentences each.
We generate 3,000 examples, where example `i` begins with sentence `i` and is followed by 10 random
sentences selected from the 3,000 sentence test set.
For measuring true-casing and sentence boundary detection, reference punctuation tokens were used for
conditioning (see graph above). If we use predicted punctuation instead, then incorrect punctuation will
result in true-casing and SBD targets not aligning correctly and these metrics will be artificially low.
## Selected Language Evaluation Reports
For now, metrics for a few selected languages are shown below.
Given the amount of work required to collect and pretty-print metrics in 47 languages, I'll add more eventually.
Expand any of the following tabs to see metrics for that language.
<details>
<summary>English</summary>
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.25 98.43 98.84 564908
<ACRONYM> (label_id: 1) 63.14 84.67 72.33 613
. (label_id: 2) 90.97 93.91 92.42 32040
, (label_id: 3) 73.95 84.32 78.79 24271
? (label_id: 4) 79.05 81.94 80.47 1041
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 97.60 97.60 97.60 622873
macro avg 81.27 88.65 84.57 622873
weighted avg 97.77 97.60 97.67 622873
```
```
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 99.72 99.85 99.78 2134956
UPPER (label_id: 1) 96.33 93.52 94.91 91996
-------------------
micro avg 99.59 99.59 99.59 2226952
macro avg 98.03 96.68 97.34 2226952
weighted avg 99.58 99.59 99.58 2226952
```
```
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.99 99.98 99.99 591540
FULLSTOP (label_id: 1) 99.61 99.89 99.75 34333
-------------------
micro avg 99.97 99.97 99.97 625873
macro avg 99.80 99.93 99.87 625873
weighted avg 99.97 99.97 99.97 625873
```
</details>
<details>
<summary>Spanish</summary>
```text
punct_pre test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.94 99.89 99.92 636941
¿ (label_id: 1) 56.73 71.35 63.20 1288
-------------------
micro avg 99.83 99.83 99.83 638229
macro avg 78.34 85.62 81.56 638229
weighted avg 99.85 99.83 99.84 638229
```
```
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.19 98.41 98.80 578271
<ACRONYM> (label_id: 1) 30.10 56.36 39.24 55
. (label_id: 2) 91.92 93.12 92.52 30856
, (label_id: 3) 72.98 82.44 77.42 27761
? (label_id: 4) 52.77 71.85 60.85 1286
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 97.40 97.40 97.40 638229
macro avg 69.39 80.44 73.77 638229
weighted avg 97.60 97.40 97.48 638229
```
```
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 99.82 99.86 99.84 2324724
UPPER (label_id: 1) 95.92 94.70 95.30 79266
-------------------
micro avg 99.69 99.69 99.69 2403990
macro avg 97.87 97.28 97.57 2403990
weighted avg 99.69 99.69 99.69 2403990
```
```
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.99 99.96 99.98 607057
FULLSTOP (label_id: 1) 99.31 99.88 99.60 34172
-------------------
micro avg 99.96 99.96 99.96 641229
macro avg 99.65 99.92 99.79 641229
weighted avg 99.96 99.96 99.96 641229
```
</details>
<details>
<summary>Amharic</summary>
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.83 99.28 99.56 729664
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 0.00 0.00 0.00 0
? (label_id: 4) 0.00 0.00 0.00 0
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 91.27 97.90 94.47 25341
፣ (label_id: 15) 61.93 82.11 70.60 5818
፧ (label_id: 16) 67.41 81.73 73.89 1177
-------------------
micro avg 99.08 99.08 99.08 762000
macro avg 80.11 90.26 84.63 762000
weighted avg 99.21 99.08 99.13 762000
```
```
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 98.40 98.03 98.21 1064
UPPER (label_id: 1) 71.23 75.36 73.24 69
-------------------
micro avg 96.65 96.65 96.65 1133
macro avg 84.81 86.69 85.73 1133
weighted avg 96.74 96.65 96.69 1133
```
```
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.99 99.85 99.92 743158
FULLSTOP (label_id: 1) 95.20 99.62 97.36 21842
-------------------
micro avg 99.85 99.85 99.85 765000
macro avg 97.59 99.74 98.64 765000
weighted avg 99.85 99.85 99.85 765000
```
</details>
<details>
<summary>Chinese</summary>
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.53 97.31 98.41 435611
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 0.00 0.00 0.00 0
? (label_id: 4) 0.00 0.00 0.00 0
? (label_id: 5) 81.85 87.31 84.49 1513
, (label_id: 6) 74.08 93.67 82.73 35921
。 (label_id: 7) 96.51 96.93 96.72 32097
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 97.00 97.00 97.00 505142
macro avg 87.99 93.81 90.59 505142
weighted avg 97.48 97.00 97.15 505142
```
```
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 94.89 94.98 94.94 2951
UPPER (label_id: 1) 81.34 81.03 81.18 796
-------------------
micro avg 92.02 92.02 92.02 3747
macro avg 88.11 88.01 88.06 3747
weighted avg 92.01 92.02 92.01 3747
```
```
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.99 99.97 99.98 473642
FULLSTOP (label_id: 1) 99.55 99.90 99.72 34500
-------------------
micro avg 99.96 99.96 99.96 508142
macro avg 99.77 99.93 99.85 508142
weighted avg 99.96 99.96 99.96 508142
```
</details>
<details>
<summary>Japanese</summary>
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.34 95.90 97.59 406341
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 0.00 0.00 0.00 0
? (label_id: 4) 0.00 0.00 0.00 0
? (label_id: 5) 70.55 73.56 72.02 1456
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 94.38 96.95 95.65 32537
、 (label_id: 8) 54.28 87.62 67.03 18610
・ (label_id: 9) 28.18 71.64 40.45 1100
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 95.51 95.51 95.51 460044
macro avg 69.35 85.13 74.55 460044
weighted avg 96.91 95.51 96.00 460044
```
```
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 92.33 94.03 93.18 4174
UPPER (label_id: 1) 83.51 79.46 81.43 1587
-------------------
micro avg 90.02 90.02 90.02 5761
macro avg 87.92 86.75 87.30 5761
weighted avg 89.90 90.02 89.94 5761
```
```
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.99 99.92 99.96 428544
FULLSTOP (label_id: 1) 99.07 99.87 99.47 34500
-------------------
micro avg 99.92 99.92 99.92 463044
macro avg 99.53 99.90 99.71 463044
weighted avg 99.92 99.92 99.92 463044
```
</details>
<details>
<summary>Hindi</summary>
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.75 99.44 99.59 560358
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 69.55 78.48 73.75 8084
? (label_id: 4) 63.30 87.07 73.31 317
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 96.92 98.66 97.78 32118
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 99.11 99.11 99.11 600877
macro avg 82.38 90.91 86.11 600877
weighted avg 99.17 99.11 99.13 600877
```
```
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 97.19 96.72 96.95 2466
UPPER (label_id: 1) 89.14 90.60 89.86 734
-------------------
micro avg 95.31 95.31 95.31 3200
macro avg 93.17 93.66 93.41 3200
weighted avg 95.34 95.31 95.33 3200
```
```
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 100.00 99.99 99.99 569472
FULLSTOP (label_id: 1) 99.82 99.99 99.91 34405
-------------------
micro avg 99.99 99.99 99.99 603877
macro avg 99.91 99.99 99.95 603877
weighted avg 99.99 99.99 99.99 603877
```
</details>
<details>
<summary>Arabic</summary>
```text
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.30 96.94 98.10 688043
<ACRONYM> (label_id: 1) 93.33 77.78 84.85 18
. (label_id: 2) 93.31 93.78 93.54 28175
, (label_id: 3) 0.00 0.00 0.00 0
? (label_id: 4) 0.00 0.00 0.00 0
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 65.93 82.79 73.40 860
، (label_id: 12) 44.89 79.20 57.30 20941
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 96.29 96.29 96.29 738037
macro avg 79.35 86.10 81.44 738037
weighted avg 97.49 96.29 96.74 738037
```
```
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 97.10 99.49 98.28 4137
UPPER (label_id: 1) 98.71 92.89 95.71 1729
-------------------
micro avg 97.55 97.55 97.55 5866
macro avg 97.90 96.19 96.99 5866
weighted avg 97.57 97.55 97.52 5866
```
```
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.99 99.97 99.98 710456
FULLSTOP (label_id: 1) 99.39 99.85 99.62 30581
-------------------
micro avg 99.97 99.97 99.97 741037
macro avg 99.69 99.91 99.80 741037
weighted avg 99.97 99.97 99.97 741037
```
</details>
# Extra Stuff
## Acronyms, abbreviations, and bi-capitalized words
This section briefly demonstrates the models behavior when presented with the following:
1. Acronyms: "NATO"
2. Fake acronyms: "NHTG" in place of "NATO"
3. Ambigous term which could be an acronym or proper noun: "Tuny"
3. Bi-capitalized words: "McDavid"
4. Intialisms: "p.m."
<details open>
<summary>Acronyms, etc. inputs</summary>
```python
from typing import List
from punctuators.models import PunctCapSegModelONNX
m: PunctCapSegModelONNX = PunctCapSegModelONNX.from_pretrained(
"1-800-BAD-CODE/xlm-roberta_punctuation_fullstop_truecase"
)
input_texts = [
"the us is a nato member as a nato member the country enjoys security guarantees notably article 5",
"the us is a nhtg member as a nhtg member the country enjoys security guarantees notably article 5",
"the us is a tuny member as a tuny member the country enjoys security guarantees notably article 5",
"connor andrew mcdavid is a canadian professional ice hockey centre and captain of the edmonton oilers of the national hockey league the oilers selected him first overall in the 2015 nhl entry draft mcdavid spent his childhood playing ice hockey against older children",
"please rsvp for the party asap preferably before 8 pm tonight",
]
results: List[List[str]] = m.infer(
texts=input_texts, apply_sbd=True,
)
for input_text, output_texts in zip(input_texts, results):
print(f"Input: {input_text}")
print(f"Outputs:")
for text in output_texts:
print(f"\t{text}")
print()
```
</details>
<details open>
<summary>Expected output</summary>
```text
Input: the us is a nato member as a nato member the country enjoys security guarantees notably article 5
Outputs:
The U.S. is a NATO member.
As a NATO member, the country enjoys security guarantees, notably Article 5.
Input: the us is a nhtg member as a nhtg member the country enjoys security guarantees notably article 5
Outputs:
The U.S. is a NHTG member.
As a NHTG member, the country enjoys security guarantees, notably Article 5.
Input: the us is a tuny member as a tuny member the country enjoys security guarantees notably article 5
Outputs:
The U.S. is a Tuny member.
As a Tuny member, the country enjoys security guarantees, notably Article 5.
Input: connor andrew mcdavid is a canadian professional ice hockey centre and captain of the edmonton oilers of the national hockey league the oilers selected him first overall in the 2015 nhl entry draft mcdavid spent his childhood playing ice hockey against older children
Outputs:
Connor Andrew McDavid is a Canadian professional ice hockey centre and captain of the Edmonton Oilers of the National Hockey League.
The Oilers selected him first overall in the 2015 NHL entry draft.
McDavid spent his childhood playing ice hockey against older children.
Input: please rsvp for the party asap preferably before 8 pm tonight
Outputs:
Please RSVP for the party ASAP, preferably before 8 p.m. tonight.
```
</details>
|