1-13-am's picture
Training completed!
c6408b5 verified
|
raw
history blame
2.1 kB
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
model-index:
  - name: deberta-pii-finetuned
    results: []

deberta-pii-finetuned

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0018
  • F Beta: 0.8127
  • Precision: 0.9818
  • Recall: 0.8071

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F Beta Precision Recall
0.0074 0.41 250 0.0022 0.9594 0.9851 0.9584
0.0031 0.82 500 0.0011 0.9541 0.9879 0.9528
0.0035 1.24 750 0.0015 0.8814 0.9869 0.8776
0.0029 1.65 1000 0.0024 0.7401 0.9849 0.7328
0.0016 2.06 1250 0.0015 0.8240 0.9810 0.8188
0.0012 2.47 1500 0.0020 0.7848 0.9812 0.7786
0.003 2.88 1750 0.0018 0.8127 0.9818 0.8071

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0