--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - precision - recall model-index: - name: deberta-pii-finetuned results: [] --- # deberta-pii-finetuned This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0018 - F Beta: 0.8127 - Precision: 0.9818 - Recall: 0.8071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F Beta | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | 0.0074 | 0.41 | 250 | 0.0022 | 0.9594 | 0.9851 | 0.9584 | | 0.0031 | 0.82 | 500 | 0.0011 | 0.9541 | 0.9879 | 0.9528 | | 0.0035 | 1.24 | 750 | 0.0015 | 0.8814 | 0.9869 | 0.8776 | | 0.0029 | 1.65 | 1000 | 0.0024 | 0.7401 | 0.9849 | 0.7328 | | 0.0016 | 2.06 | 1250 | 0.0015 | 0.8240 | 0.9810 | 0.8188 | | 0.0012 | 2.47 | 1500 | 0.0020 | 0.7848 | 0.9812 | 0.7786 | | 0.003 | 2.88 | 1750 | 0.0018 | 0.8127 | 0.9818 | 0.8071 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0