CON-DETR-V5 / README.md
0llheaven's picture
Update README.md
a80f747 verified
---
library_name: transformers
tags: []
base_model: microsoft/conditional-detr-resnet-50
---
# Model Overview
This model is a DETR-based object detection model trained for medical image analysis,
4 classes : 0:Pneumonia, 1:Normal, 2:Pneumonia_bacteria, and 3:Pneumonia_virus
## Model Description
Model Architecture: DEtection TRansformers (DETR)
Training Data: Trained on a custom dataset of annotated medical images
Intended Use: Designed for analyzing chest X-ray images to detect the presence and type of pneumonia, or classify as normal..
## Uses
Example Code test model!
```python
import os
from transformers import AutoImageProcessor, AutoModelForObjectDetection
import torch
from PIL import Image
import pandas as pd
folder_path = ""
processor = AutoImageProcessor.from_pretrained("0llheaven/CON-DETR-V5")
model = AutoModelForObjectDetection.from_pretrained("0llheaven/CON-DETR-V5")
results_list = []
for image_name in os.listdir(folder_path):
if image_name.endswith((".jpg", ".png", ".jpeg")):
image_path = os.path.join(folder_path, image_name)
image = Image.open(image_path)
# RGB To grayscale
if image.mode != "RGB":
image = image.convert("RGB")
# prediction
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
print(f"Processing image: {image_name}")
# detect_box
detected_any = False
for result in results:
scores = result["scores"]
labels = result["labels"]
boxes = result["boxes"]
filtered_data = [(score, label, box) for score, label, box in zip(scores, labels, boxes) if score > 0.5][:2] # จำกัดให้เก็บได้ไม่เกิน 2 กล่อง
for score, label, box in zip(scores, labels, boxes):
if score > 0.5:
if len(filtered_data) > 0:
detected_any = True
for score, label, box in filtered_data:
if label.item() == 0:
label_name = "Pneumonia"
elif label.item() == 1:
label_name = "Normal"
elif label.item() == 2:
label_name = "Pneumonia_bacteria"
else:
label_name = "Pneumonia_virus"
xmin, ymin, xmax, ymax = [round(i, 2) for i in box.tolist()]
print(f" - Detected {label_name} with score {round(score.item(), 3)} at {xmin, ymin, xmax, ymax}")
results_list.append({
"image_name": image_name,
"label": label_name,
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
"score": round(score.item(), 3),
})
if not detected_any:
print(" - No Detect")
results_list.append({
"image_name": image_name,
"label": "Other",
"xmin": 0,
"ymin": 0,
"xmax": 0,
"ymax": 0,
"score": 0,
})
results_df = pd.DataFrame(results_list)
print("\nFinal results:")
results_df.to_csv("testmodel.csv", index=False)
```