metadata
library_name: transformers
tags: []
base_model: microsoft/conditional-detr-resnet-50
Model Overview
This model is a DETR-based object detection model trained for medical image analysis, 4 classes : 0:Pneumonia, 1:Normal, 2:Pneumonia_bacteria, and 3:Pneumonia_virus
Model Description
Model Architecture: DEtection TRansformers (DETR) Training Data: Trained on a custom dataset of annotated medical images Intended Use: Designed for analyzing chest X-ray images to detect the presence and type of pneumonia, or classify as normal..
Uses
Example Code test model!
import os
from transformers import AutoImageProcessor, AutoModelForObjectDetection
import torch
from PIL import Image
import pandas as pd
folder_path = ""
processor = AutoImageProcessor.from_pretrained("0llheaven/CON-DETR-V5")
model = AutoModelForObjectDetection.from_pretrained("0llheaven/CON-DETR-V5")
results_list = []
for image_name in os.listdir(folder_path):
if image_name.endswith((".jpg", ".png", ".jpeg")):
image_path = os.path.join(folder_path, image_name)
image = Image.open(image_path)
# RGB To grayscale
if image.mode != "RGB":
image = image.convert("RGB")
# prediction
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
print(f"Processing image: {image_name}")
# detect_box
detected_any = False
for result in results:
scores = result["scores"]
labels = result["labels"]
boxes = result["boxes"]
filtered_data = [(score, label, box) for score, label, box in zip(scores, labels, boxes) if score > 0.5][:2] # จำกัดให้เก็บได้ไม่เกิน 2 กล่อง
for score, label, box in zip(scores, labels, boxes):
if score > 0.5:
if len(filtered_data) > 0:
detected_any = True
for score, label, box in filtered_data:
if label.item() == 0:
label_name = "Pneumonia"
elif label.item() == 1:
label_name = "Normal"
elif label.item() == 2:
label_name = "Pneumonia_bacteria"
else:
label_name = "Pneumonia_virus"
xmin, ymin, xmax, ymax = [round(i, 2) for i in box.tolist()]
print(f" - Detected {label_name} with score {round(score.item(), 3)} at {xmin, ymin, xmax, ymax}")
results_list.append({
"image_name": image_name,
"label": label_name,
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
"score": round(score.item(), 3),
})
if not detected_any:
print(" - No Detect")
results_list.append({
"image_name": image_name,
"label": "Other",
"xmin": 0,
"ymin": 0,
"xmax": 0,
"ymax": 0,
"score": 0,
})
results_df = pd.DataFrame(results_list)
print("\nFinal results:")
results_df.to_csv("testmodel.csv", index=False)