File size: 25,238 Bytes
01cd082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
# torchrun --standalone --nproc_per_node=2 train.py --batch_size=96
# train.py
import os
import time
import math
from contextlib import nullcontext
import json
import numpy as np
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
import pandas as pd
import tiktoken
from model import GPTConfig, GPT
# Import wandb and tqdm
import wandb
from tqdm.auto import tqdm
# -----------------------------------------------------------------------------
# Default configuration with added positional encoding options
# I/O
out_dir = 'out'
eval_interval = 100 # Evaluate every 100 iterations
log_interval = 1 # Log every iteration
eval_iters = 100
eval_only = False
always_save_checkpoint = True
init_from = 'scratch' # 'scratch' | 'resume' | 'checkpoint'
checkpoint_path = '' # Path to a specific checkpoint to load
# wandb logging
wandb_log = True
wandb_project = 'gpt2_positional_encodings_10B'
wandb_run_name = 'experiment'
# data
dataset = 'fineweb'
gradient_accumulation_steps = 40
batch_size = 12
block_size = 512
# model
n_layer = 4
n_head = 4
n_embd = 256
dropout = 0.0
bias = False
# adamw optimizer
learning_rate = 6e-4
max_iters = 10000
weight_decay = 1e-1
beta1 = 0.9
beta2 = 0.95
grad_clip = 1.0
# learning rate decay settings
decay_lr = True
warmup_iters = 100
lr_decay_iters = 10000
min_lr = 6e-5
# DDP settings
backend = 'nccl'
# system
device = 'cuda'
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
compile = True
# Positional Encodings
embedding_types = ['sinusoidal', 'polynomial_legendre',
'polynomial_chebyshev']
attention_types = ['default']
# Data collection options
collect_attention_patterns = False # Set to True to collect attention patterns
collect_activations = False # Set to True to collect activations
# Evaluation datasets
eval_datasets = ['wikitext-103-v1', 'ptb', 'lambada'] # WikiText-103 and Penn Treebank
seed = 1337
# -----------------------------------------------------------------------------
config_keys = [k for k, v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str, list, tuple))]
exec(open('configurator.py').read())
config = {k: globals()[k] for k in config_keys}
# -----------------------------------------------------------------------------
def is_compatible(embedding_type, attention_type):
# Incompatible combinations can be specified here
incompatible_combinations = [
# If specific combinations are incompatible
]
# If embedding_type or attention_type is 'none', some attention methods may not function properly
if embedding_type == 'none' and attention_type in ['relative', 'rope']:
return False
# 'rope' attention requires even dimension per head
if attention_type == 'rope' and ((n_embd // n_head) % 2 != 0):
return False
return (embedding_type, attention_type) not in incompatible_combinations
def main():
# Initialize DDP if needed
global gradient_accumulation_steps
ddp = int(os.environ.get('RANK', -1)) != -1
if ddp:
init_process_group(backend=backend)
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device_local = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device_local)
master_process = ddp_rank == 0
seed_offset = ddp_rank
assert gradient_accumulation_steps % ddp_world_size == 0
gradient_accumulation_steps //= ddp_world_size
else:
master_process = True
seed_offset = 0
ddp_world_size = 1
device_local = device # Use the default device
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
if master_process:
print(f"Tokens per iteration will be: {tokens_per_iter:,}")
if master_process:
os.makedirs(out_dir, exist_ok=True)
# Set random seed
global seed
seed += seed_offset
torch.manual_seed(seed)
np.random.seed(seed)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device_type = 'cuda' if 'cuda' in device_local else 'cpu'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# Load tokenizer using tiktoken
tokenizer = tiktoken.get_encoding("gpt2")
# Prepare evaluation datasets
eval_data = {}
for eval_dataset in eval_datasets:
eval_data_path = os.path.join('data', eval_dataset)
if not os.path.exists(eval_data_path):
raise FileNotFoundError(f"Dataset {eval_dataset} not found. Please run prepare_evaluation_data.py first.")
if eval_dataset in ['wikitext-2-v1', 'wikitext-103-v1']:
train_file = [f for f in os.listdir(eval_data_path) if f.startswith('train')][0]
val_file = [f for f in os.listdir(eval_data_path) if f.startswith('validation')][0]
train_df = pd.read_parquet(os.path.join(eval_data_path, train_file))
val_df = pd.read_parquet(os.path.join(eval_data_path, val_file))
train_text = '\n'.join(train_df['text'])
val_text = '\n'.join(val_df['text'])
elif eval_dataset == 'ptb':
with open(os.path.join(eval_data_path, 'train.txt'), 'r') as f:
train_text = f.read()
with open(os.path.join(eval_data_path, 'valid.txt'), 'r') as f:
val_text = f.read()
elif eval_dataset == 'lambada':
with open(os.path.join(eval_data_path, 'lambada_test.jsonl'), 'r') as f:
data = [json.loads(line) for line in f]
test_text = '\n'.join([item['text'] for item in data])
train_text = test_text[:len(test_text)//2] # Use first half as pseudo-train
val_text = test_text[len(test_text)//2:] # Use second half as pseudo-val
else:
raise ValueError(f"Unknown dataset: {eval_dataset}")
# Tokenize
train_ids = tokenizer.encode_ordinary(train_text)
val_ids = tokenizer.encode_ordinary(val_text)
# Convert to numpy arrays
train_ids = np.array(train_ids, dtype=np.uint16)
val_ids = np.array(val_ids, dtype=np.uint16)
eval_data[eval_dataset] = {'train': train_ids, 'val': val_ids}
# Data loading
data_dir = os.path.join('data', dataset)
# Update the get_batch function to handle evaluation datasets
def get_batch(split, dataset='main'):
if dataset == 'main':
if split == 'train':
data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
else:
data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
else:
data = eval_data[dataset][split]
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
if device_type == 'cuda':
x, y = x.pin_memory().to(device_local, non_blocking=True), y.pin_memory().to(device_local, non_blocking=True)
else:
x, y = x.to(device_local), y.to(device_local)
return x, y
# Attempt to derive vocab_size from the dataset
meta_path = os.path.join(data_dir, 'meta.json')
meta_vocab_size = None
if os.path.exists(meta_path):
with open(meta_path, 'r') as f:
meta = json.load(f)
meta_vocab_size = meta['vocab_size']
if master_process:
print(f"Found vocab_size = {meta_vocab_size} (inside {meta_path})")
# Helps estimate loss and collect attention patterns and activations
@torch.no_grad()
def estimate_loss(model, collect_attention_patterns=False, collect_activations=False, save_dir=None, max_batches_to_save=None):
out = {}
model.eval()
# Access the underlying model if wrapped with DDP
raw_model = model.module if hasattr(model, 'module') else model
# Set tracking flags on the underlying model
raw_model.config.track_attention_patterns = collect_attention_patterns
raw_model.config.track_activations = collect_activations
if collect_attention_patterns or collect_activations:
if save_dir is None:
raise ValueError("save_dir must be specified when collecting attention patterns or activations.")
if master_process:
os.makedirs(save_dir, exist_ok=True)
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
save_count = 0 # Counter for saved batches
for k in range(eval_iters):
X, Y = get_batch(split)
with ctx:
logits, loss = model(X, Y)
losses[k] = loss.item()
# Collect and save attention patterns and activations
if (collect_attention_patterns or collect_activations) and save_count < (max_batches_to_save or eval_iters):
if collect_attention_patterns or collect_activations:
if master_process:
batch_dir = os.path.join(save_dir, f"{split}_batch_{k}")
os.makedirs(batch_dir, exist_ok=True)
# Save activations
if collect_activations and hasattr(raw_model, 'activations'):
for idx, activation in enumerate(raw_model.activations):
activation_path = os.path.join(batch_dir, f"activation_layer_{idx}.pt")
torch.save(activation, activation_path)
# Save attention patterns
if collect_attention_patterns and hasattr(raw_model, 'attention_patterns'):
for idx, attention in enumerate(raw_model.attention_patterns):
attention_path = os.path.join(batch_dir, f"attention_layer_{idx}.pt")
torch.save(attention, attention_path)
# Clear activations and attention patterns from the model
raw_model.activations = []
raw_model.attention_patterns = []
save_count += 1
out[split] = losses.mean().item()
# Evaluate on additional datasets
for eval_dataset in eval_datasets:
split_losses = {}
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
save_count = 0 # Counter for saved batches
for k in range(eval_iters):
X, Y = get_batch(split, dataset=eval_dataset)
with ctx:
logits, loss = model(X, Y)
losses[k] = loss.item()
# Collect and save attention patterns and activations
if (collect_attention_patterns or collect_activations) and save_count < (max_batches_to_save or eval_iters):
if collect_attention_patterns or collect_activations:
if master_process:
batch_dir = os.path.join(save_dir, f"{eval_dataset}_{split}_batch_{k}")
os.makedirs(batch_dir, exist_ok=True)
# Save activations
if collect_activations and hasattr(raw_model, 'activations'):
for idx, activation in enumerate(raw_model.activations):
activation_path = os.path.join(batch_dir, f"activation_layer_{idx}.pt")
torch.save(activation, activation_path)
# Save attention patterns
if collect_attention_patterns and hasattr(raw_model, 'attention_patterns'):
for idx, attention in enumerate(raw_model.attention_patterns):
attention_path = os.path.join(batch_dir, f"attention_layer_{idx}.pt")
torch.save(attention, attention_path)
# Clear activations and attention patterns from the model
raw_model.activations = []
raw_model.attention_patterns = []
save_count += 1
split_losses[split] = losses.mean().item()
out[eval_dataset] = split_losses
model.train()
# Reset tracking flags
raw_model.config.track_attention_patterns = False
raw_model.config.track_activations = False
return out
# Learning rate decay scheduler
def get_lr(it):
if it < warmup_iters:
return learning_rate * it / warmup_iters
if it > lr_decay_iters:
return min_lr
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (learning_rate - min_lr)
# Training loop over positional encoding combinations
for embedding_type in embedding_types:
for attention_type in attention_types:
if not is_compatible(embedding_type, attention_type):
if master_process:
print(f"Skipping incompatible combination: Embedding={embedding_type}, Attention={attention_type}")
continue
# Configure model arguments
model_args = dict(
n_layer=n_layer,
n_head=n_head,
n_embd=n_embd,
block_size=block_size,
bias=bias,
vocab_size=None,
dropout=dropout,
embedding_type=embedding_type,
attention_type=attention_type,
track_activations=False,
track_attention_patterns=False,
)
# Initialize or resume model
iter_num = 0
best_val_loss = 1e9 # initialize best val loss to a high value
checkpoint = None
run_id = None # Initialize run_id to None
if init_from == 'scratch':
if master_process:
print(f"\nInitializing new model with embedding_type={embedding_type}, attention_type={attention_type}")
if meta_vocab_size is None:
if master_process:
print("Defaulting to vocab_size of GPT-2 to 50257")
model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50257
gptconf = GPTConfig(**model_args)
model = GPT(gptconf)
elif init_from == 'resume':
# Resume from the latest checkpoint
ckpt_path = os.path.join(out_dir, f"ckpt_{embedding_type}_{attention_type}.pt")
if not os.path.exists(ckpt_path):
raise FileNotFoundError(f"Checkpoint not found at {ckpt_path}")
if master_process:
print(f"\nResuming training from checkpoint {ckpt_path}")
checkpoint = torch.load(ckpt_path, map_location=device_local)
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
model.load_state_dict(checkpoint['model'])
iter_num = checkpoint['iter_num']
best_val_loss = checkpoint['best_val_loss']
seed = checkpoint.get('seed', seed)
run_id = checkpoint.get('wandb_run_id', None)
elif init_from == 'checkpoint':
# Resume from a specific checkpoint
if not checkpoint_path or not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Checkpoint not found at {checkpoint_path}")
if master_process:
print(f"\nLoading model from checkpoint {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=device_local)
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
model.load_state_dict(checkpoint['model'])
iter_num = checkpoint['iter_num']
best_val_loss = checkpoint['best_val_loss']
seed = checkpoint.get('seed', seed)
run_id = checkpoint.get('wandb_run_id', None)
else:
raise ValueError(f"Unknown init_from '{init_from}'")
# Set random seed
seed += seed_offset
torch.manual_seed(seed)
np.random.seed(seed)
model.to(device_local)
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
# Load optimizer state if resuming
if checkpoint is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
if compile:
if master_process:
print("Compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model)
if ddp:
model = DDP(model, device_ids=[ddp_local_rank])
# Logging with WandB
if wandb_log and master_process:
run_name = f"{embedding_type}_{attention_type}_{wandb_run_name}"
# Initialize WandB
wandb.init(project=wandb_project, name=run_name, config=config, resume='allow', id=run_id)
# Save the run ID for resuming later
run_id = wandb.run.id
else:
run_id = None
# Training loop
X, Y = get_batch('train')
t0 = time.time()
local_iter_num = 0
raw_model = model.module if hasattr(model, 'module') else model
running_mfu = -1.0
progress_bar = tqdm(total=max_iters, initial=iter_num, desc=f"Training {embedding_type} + {attention_type}", disable=not master_process)
progress_bar_update_freq = 1 # Update progress bar every iteration
while True:
# Determine learning rate
lr = get_lr(iter_num) if decay_lr else learning_rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Evaluate and checkpoint
if iter_num % eval_interval == 0 and iter_num > 0:
# Define save_dir for collected data
eval_data_dir = os.path.join('data', 'eval_data', f"{embedding_type}_{attention_type}", f"step_{iter_num}")
# Set a limit on the number of batches to save during evaluation
max_batches_to_save = 10 # Adjust this number as needed to control storage usage
losses = estimate_loss(model,
collect_attention_patterns=collect_attention_patterns,
collect_activations=collect_activations,
save_dir=eval_data_dir,
max_batches_to_save=max_batches_to_save)
if master_process:
print(f"\nStep {iter_num}:")
print(f"Train loss: {losses['train']:.4f}, Val loss: {losses['val']:.4f}")
for eval_dataset in eval_datasets:
print(f"{eval_dataset} - Train loss: {losses[eval_dataset]['train']:.4f}, Val loss: {losses[eval_dataset]['val']:.4f}")
# Log to wandb
if wandb_log:
wandb_metrics = {
"iter": iter_num,
"train/loss": losses['train'],
"val/loss": losses['val'],
"lr": lr,
"mfu": running_mfu * 100,
}
for eval_dataset in eval_datasets:
wandb_metrics[f"{eval_dataset}/train_loss"] = losses[eval_dataset]['train']
wandb_metrics[f"{eval_dataset}/val_loss"] = losses[eval_dataset]['val']
wandb.log(wandb_metrics, step=iter_num)
if losses['val'] < best_val_loss or always_save_checkpoint:
best_val_loss = losses['val']
if iter_num > 0:
checkpoint = {
'model': raw_model.state_dict(),
'optimizer': optimizer.state_dict(),
'model_args': model_args,
'iter_num': iter_num,
'best_val_loss': best_val_loss,
'config': config,
'seed': seed,
'wandb_run_id': run_id
}
ckpt_path = os.path.join(out_dir, f"ckpt_{embedding_type}_{attention_type}.pt")
if master_process:
print(f"Saving checkpoint to {ckpt_path}")
torch.save(checkpoint, ckpt_path)
# Update progress bar postfix
if master_process:
postfix_dict = {
'train_loss': f"{losses['train']:.4f}",
'val_loss': f"{losses['val']:.4f}"
}
for eval_dataset in eval_datasets:
postfix_dict[f"{eval_dataset}_val_loss"] = f"{losses[eval_dataset]['val']:.4f}"
progress_bar.set_postfix(postfix_dict)
if eval_only:
break
# Forward backward update
for micro_step in range(gradient_accumulation_steps):
if ddp:
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
with ctx:
logits, loss = model(X, Y)
loss = loss / gradient_accumulation_steps
X, Y = get_batch('train')
scaler.scale(loss).backward()
if grad_clip != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
# Logging
t1 = time.time()
dt = t1 - t0
t0 = t1
if iter_num % log_interval == 0:
lossf = loss.item() * gradient_accumulation_steps
if local_iter_num >= 5:
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
running_mfu = mfu if running_mfu == -1.0 else 0.9 * running_mfu + 0.1 * mfu
if master_process:
progress_bar.set_postfix({
'loss': f"{lossf:.4f}",
'lr': f"{lr:.2e}",
'mfu': f"{running_mfu*100:.2f}%",
'time_per_iter_ms': f"{dt * 1000:.2f}ms",
})
if wandb_log:
wandb.log({
"iter": iter_num,
"train/loss": lossf,
"lr": lr,
"mfu": running_mfu * 100,
"time_per_iter_ms": dt * 1000,
}, step=iter_num)
iter_num += 1
local_iter_num += 1
if master_process:
progress_bar.update(progress_bar_update_freq)
# Termination conditions
if iter_num > max_iters:
break
if master_process:
progress_bar.close()
if wandb_log and master_process:
wandb.finish()
# Destroy the process group after all models have been trained
if ddp:
destroy_process_group()
if __name__ == '__main__':
main() |