Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,61 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
|
6 |
+
# RankingGPT-bloom-3b
|
7 |
+
|
8 |
+
RankingGPT is a text ranker based on large language models with significant in-domain and out-domain effectiveness.
|
9 |
+
We provide RankingGPT in different sizes and types, including bloom-560m, bloom-1b1, bloom-3b, bloom-7b, llama2-7b, baichuan2-7b and qwen-7b.
|
10 |
+
|
11 |
+
More details please refer to our [paper](https://arxiv.org/abs/2311.16720) and [github](https://github.com/Alibaba-NLP/RankingGPT).
|
12 |
+
|
13 |
+
|
14 |
+
## Usage
|
15 |
+
|
16 |
+
Code example
|
17 |
+
```python
|
18 |
+
import torch
|
19 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained('zyznull/RankingGPT-bloom-3b')
|
22 |
+
model = AutoModelForCausalLM.from_pretrained('zyznull/RankingGPT-bloom-3b').eval()
|
23 |
+
|
24 |
+
query='when should a baby walk'
|
25 |
+
document='Most babies start to walk around 13 months, but your baby may start walking as early as 9 or 10 months or as late as 15 or 16 months.'
|
26 |
+
|
27 |
+
context=f'Document: {document} Query:'
|
28 |
+
example=context+query
|
29 |
+
|
30 |
+
context_enc = tokenizer.encode(context, add_special_tokens=False)
|
31 |
+
continuation_enc = tokenizer.encode(query, add_special_tokens=False)
|
32 |
+
model_input = torch.tensor(context_enc+continuation_enc[:-1])
|
33 |
+
continuation_len = len(continuation_enc)
|
34 |
+
input_len, = model_input.shape
|
35 |
+
|
36 |
+
|
37 |
+
with torch.no_grad():
|
38 |
+
logprobs = torch.nn.functional.log_softmax(model(model_input.unsqueeze(dim=0))[0], dim=-1)[0]
|
39 |
+
|
40 |
+
logprobs = logprobs[input_len-continuation_len:]
|
41 |
+
logprobs = torch.gather(logprobs, 1, torch.tensor(continuation_enc).unsqueeze(-1)).squeeze(-1)
|
42 |
+
score = torch.sum(logprobs)/logprobs.shape[0]
|
43 |
+
|
44 |
+
print(f"Document: {document[:20] + '...'} Score: {score}")
|
45 |
+
```
|
46 |
+
|
47 |
+
|
48 |
+
### Citation
|
49 |
+
|
50 |
+
If you find our paper or models helpful, please consider citing them as follows:
|
51 |
+
|
52 |
+
```
|
53 |
+
@misc{zhang2023rankinggpt,
|
54 |
+
title={RankingGPT: Empowering Large Language Models in Text Ranking with Progressive Enhancement},
|
55 |
+
author={Longhui Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang and Min Zhang},
|
56 |
+
year={2023},
|
57 |
+
eprint={2311.16720},
|
58 |
+
archivePrefix={arXiv},
|
59 |
+
primaryClass={cs.IR}
|
60 |
+
}
|
61 |
+
```
|