metadata
language:
- gl
license: apache-2.0
base_model: openai/whisper-medium
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Medium Galician
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_13_0 gl
type: mozilla-foundation/common_voice_13_0
config: gl
split: validation
args: gl
metrics:
- name: Wer
type: wer
value: 6.433092380590046
Whisper Medium Galician
This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_13_0 gl dataset. It achieves the following results on the evaluation set:
- Loss: 0.2829
- Wer: 6.4331
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0825 | 5.81 | 1000 | 0.1863 | 7.0141 |
0.0138 | 11.63 | 2000 | 0.2197 | 6.6873 |
0.0059 | 17.44 | 3000 | 0.2436 | 6.5922 |
0.0033 | 23.26 | 4000 | 0.2536 | 6.5040 |
0.002 | 29.07 | 5000 | 0.2606 | 6.6925 |
0.002 | 34.88 | 6000 | 0.2690 | 6.6890 |
0.001 | 40.7 | 7000 | 0.2734 | 6.5853 |
0.0007 | 46.51 | 8000 | 0.2821 | 6.4798 |
0.0006 | 52.33 | 9000 | 0.2829 | 6.4331 |
0.0007 | 58.14 | 10000 | 0.2847 | 6.4452 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1