whisper-large-v3-pt / README.md
zuazo's picture
Model save
e9bd606 verified
|
raw
history blame
3.01 kB
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: openai/whisper-large-v3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: pt
          split: test
          args: pt
        metrics:
          - name: Wer
            type: wer
            value: 4.600269444353169

openai/whisper-large-v3

This model is a fine-tuned version of openai/whisper-large-v3 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4315
  • Wer: 4.6003

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0702 3.53 1000 0.1289 4.0367
0.0247 7.05 2000 0.1806 4.4294
0.0074 10.58 3000 0.2821 4.7481
0.0022 14.11 4000 0.3160 4.6249
0.0016 17.64 5000 0.3261 4.6479
0.0027 21.16 6000 0.3373 4.6479
0.0009 24.69 7000 0.3642 4.7087
0.0007 28.22 8000 0.3551 4.6611
0.0006 31.75 9000 0.3741 4.7481
0.0004 35.27 10000 0.3755 4.6791
0.0008 38.8 11000 0.3690 4.6381
0.0002 42.33 12000 0.3888 4.5115
0.0002 45.86 13000 0.3982 4.5855
0.0001 49.38 14000 0.4040 4.6085
0.0001 52.91 15000 0.4100 4.5888
0.0001 56.44 16000 0.4165 4.5871
0.0001 59.96 17000 0.4211 4.5855
0.0001 63.49 18000 0.4265 4.5838
0.0001 67.02 19000 0.4302 4.5921
0.0001 70.55 20000 0.4315 4.6003

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.15.1