whisper-large-v3-ca / README.md
zuazo's picture
End of training
e0526ab verified
|
raw
history blame
3.12 kB
metadata
language:
  - ca
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Large-V3 Catalan
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 ca
          type: mozilla-foundation/common_voice_13_0
          config: ca
          split: test
          args: ca
        metrics:
          - name: Wer
            type: wer
            value: 5.971420405830237

Whisper Large-V3 Catalan

This model is a fine-tuned version of openai/whisper-large-v3 on the mozilla-foundation/common_voice_13_0 ca dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2783
  • Wer: 5.9714

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0988 1.95 1000 0.1487 6.5619
0.025 3.91 2000 0.1676 6.3155
0.0105 5.86 3000 0.1871 6.4035
0.0047 7.81 4000 0.1973 6.4870
0.0061 9.77 5000 0.2086 6.4836
0.0034 11.72 6000 0.2172 6.6442
0.0036 13.67 7000 0.2205 6.4041
0.002 15.62 8000 0.2214 6.4350
0.0011 17.58 9000 0.2339 6.1943
0.0009 19.53 10000 0.2388 6.2921
0.0011 21.48 11000 0.2327 6.2515
0.0003 23.44 12000 0.2472 6.2052
0.0012 25.39 13000 0.2382 6.2892
0.0001 27.34 14000 0.2550 5.9949
0.0006 29.3 15000 0.2574 6.3607
0.0001 31.25 16000 0.2584 6.0143
0.0001 33.2 17000 0.2686 5.9486
0.0 35.16 18000 0.2736 5.9194
0.0 37.11 19000 0.2768 5.9646
0.0 39.06 20000 0.2783 5.9714

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1