whisper-large-v2-gl / README.md
zuazo's picture
Model save
db42b0e
|
raw
history blame
2.97 kB
metadata
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: openai/whisper-large-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: gl
          split: test
          args: gl
        metrics:
          - name: Wer
            type: wer
            value: 6.01717715231788

openai/whisper-large-v2

This model is a fine-tuned version of openai/whisper-large-v2 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3753
  • Wer: 6.0172

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0185 4.01 1000 0.1896 6.3569
0.0067 9.01 2000 0.2083 6.3862
0.0038 14.01 3000 0.2291 6.4621
0.0022 19.01 4000 0.2412 6.4794
0.0013 24.01 5000 0.2515 6.4673
0.0023 29.01 6000 0.2570 6.6432
0.0018 34.01 7000 0.2474 6.6380
0.0017 39.01 8000 0.2530 6.9312
0.0001 44.01 9000 0.2758 6.2379
0.0001 49.01 10000 0.2952 6.1241
0.0001 54.01 11000 0.3056 6.0499
0.0 59.01 12000 0.3152 5.9948
0.0 64.01 13000 0.3244 6.0310
0.0 69.01 14000 0.3336 6.0586
0.0 74.01 15000 0.3428 6.0344
0.0 79.01 16000 0.3518 6.0017
0.0 84.01 17000 0.3601 5.9879
0.0 89.01 18000 0.3675 6.0103
0.0 94.01 19000 0.3729 6.0068
0.0 99.01 20000 0.3753 6.0172

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3