zklee98's picture
Upload 4 files
ca0598f
metadata
license: other
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b1-solarModuleAnomaly-v0.1
    results: []

segformer-b1-solarModuleAnomaly-v0.1

This model is a fine-tuned version of nvidia/mit-b1 on the zklee98/solarModuleAnomaly dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1547
  • Mean Iou: 0.3822
  • Mean Accuracy: 0.7643
  • Overall Accuracy: 0.7643
  • Accuracy Unlabelled: nan
  • Accuracy Anomaly: 0.7643
  • Iou Unlabelled: 0.0
  • Iou Anomaly: 0.7643

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabelled Accuracy Anomaly Iou Unlabelled Iou Anomaly
0.4699 0.4 20 0.6337 0.4581 0.9162 0.9162 nan 0.9162 0.0 0.9162
0.3129 0.8 40 0.4636 0.3704 0.7407 0.7407 nan 0.7407 0.0 0.7407
0.2732 1.2 60 0.3164 0.3867 0.7734 0.7734 nan 0.7734 0.0 0.7734
0.2653 1.6 80 0.3769 0.4090 0.8180 0.8180 nan 0.8180 0.0 0.8180
0.2232 2.0 100 0.2976 0.2479 0.4958 0.4958 nan 0.4958 0.0 0.4958
0.5305 2.4 120 0.3151 0.3807 0.7613 0.7613 nan 0.7613 0.0 0.7613
0.2423 2.8 140 0.3189 0.4152 0.8305 0.8305 nan 0.8305 0.0 0.8305
0.3341 3.2 160 0.2384 0.3861 0.7723 0.7723 nan 0.7723 0.0 0.7723
0.2146 3.6 180 0.3200 0.4621 0.9243 0.9243 nan 0.9243 0.0 0.9243
0.1866 4.0 200 0.2510 0.3646 0.7291 0.7291 nan 0.7291 0.0 0.7291
0.2861 4.4 220 0.2736 0.4202 0.8404 0.8404 nan 0.8404 0.0 0.8404
0.2048 4.8 240 0.2410 0.3912 0.7823 0.7823 nan 0.7823 0.0 0.7823
0.1604 5.2 260 0.2233 0.3672 0.7344 0.7344 nan 0.7344 0.0 0.7344
0.2756 5.6 280 0.2705 0.4494 0.8987 0.8987 nan 0.8987 0.0 0.8987
0.1859 6.0 300 0.2211 0.4045 0.8089 0.8089 nan 0.8089 0.0 0.8089
0.1306 6.4 320 0.2140 0.3763 0.7525 0.7525 nan 0.7525 0.0 0.7525
0.5508 6.8 340 0.2231 0.4185 0.8371 0.8371 nan 0.8371 0.0 0.8371
0.1446 7.2 360 0.2139 0.3666 0.7332 0.7332 nan 0.7332 0.0 0.7332
0.3275 7.6 380 0.2470 0.3964 0.7928 0.7928 nan 0.7928 0.0 0.7928
0.164 8.0 400 0.2017 0.3910 0.7819 0.7819 nan 0.7819 0.0 0.7819
0.1864 8.4 420 0.2307 0.4408 0.8816 0.8816 nan 0.8816 0.0 0.8816
0.1578 8.8 440 0.1869 0.3707 0.7414 0.7414 nan 0.7414 0.0 0.7414
0.1201 9.2 460 0.2115 0.3834 0.7667 0.7667 nan 0.7667 0.0 0.7667
0.1783 9.6 480 0.2009 0.3747 0.7495 0.7495 nan 0.7495 0.0 0.7495
0.1232 10.0 500 0.1797 0.3865 0.7729 0.7729 nan 0.7729 0.0 0.7729
0.2572 10.4 520 0.1983 0.4057 0.8115 0.8115 nan 0.8115 0.0 0.8115
0.1209 10.8 540 0.1607 0.4274 0.8547 0.8547 nan 0.8547 0.0 0.8547
0.1234 11.2 560 0.2260 0.4066 0.8133 0.8133 nan 0.8133 0.0 0.8133
0.145 11.6 580 0.1963 0.3939 0.7878 0.7878 nan 0.7878 0.0 0.7878
0.0665 12.0 600 0.1912 0.3873 0.7747 0.7747 nan 0.7747 0.0 0.7747
0.0826 12.4 620 0.2095 0.4186 0.8373 0.8373 nan 0.8373 0.0 0.8373
0.1212 12.8 640 0.1732 0.4059 0.8118 0.8118 nan 0.8118 0.0 0.8118
0.142 13.2 660 0.2086 0.4007 0.8013 0.8013 nan 0.8013 0.0 0.8013
0.0899 13.6 680 0.1838 0.3928 0.7856 0.7856 nan 0.7856 0.0 0.7856
0.1857 14.0 700 0.1638 0.4157 0.8315 0.8315 nan 0.8315 0.0 0.8315
0.0788 14.4 720 0.1736 0.4112 0.8223 0.8223 nan 0.8223 0.0 0.8223
0.2543 14.8 740 0.1547 0.3822 0.7643 0.7643 nan 0.7643 0.0 0.7643

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3