Linear-Matrix-Probability
commited on
Create handler.py
Browse files- handler.py +36 -0
handler.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
from transformers import (
|
3 |
+
AutoTokenizer,
|
4 |
+
AutoModelForSeq2SeqLM,
|
5 |
+
)
|
6 |
+
|
7 |
+
# in line with the default config of the model
|
8 |
+
CONFIG = {
|
9 |
+
'max_length': 512,
|
10 |
+
'num_return_sequences': 1,
|
11 |
+
'no_repeat_ngram_size': 2,
|
12 |
+
'top_k': 50,
|
13 |
+
'top_p': 0.95,
|
14 |
+
'do_sample': True,
|
15 |
+
}
|
16 |
+
|
17 |
+
class EndpointHandler:
|
18 |
+
def __init__(self, path: str = ""):
|
19 |
+
|
20 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
21 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(path)
|
22 |
+
|
23 |
+
def __call__(self, data: Dict[str, str]) -> List[Dict[str, str]]:
|
24 |
+
|
25 |
+
inputs = data.pop('inputs', None)
|
26 |
+
if inputs is None or inputs == '':
|
27 |
+
return [{'generated_text': 'No input provided'}]
|
28 |
+
|
29 |
+
# preprocess
|
30 |
+
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids
|
31 |
+
# inference
|
32 |
+
output_ids = self.model.generate(input_ids, **CONFIG)
|
33 |
+
# postprocess
|
34 |
+
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
35 |
+
|
36 |
+
return [{'generated_text': response}]
|