ghh001 commited on
Commit
06323a6
1 Parent(s): b1eb90b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -89,7 +89,7 @@ from transformers import (
89
  GenerationConfig,
90
  BitsAndBytesConfig
91
  )
92
-
93
  model_path = 'zjunlp/OneKE'
94
  config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
95
  tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
@@ -120,7 +120,7 @@ system_prompt = '<<SYS>>\nYou are a helpful assistant. 你是一个乐于助人
120
  sintruct = "{\"instruction\": \"You are an expert in named entity recognition. Please extract entities that match the schema definition from the input. Return an empty list if the entity type does not exist. Please respond in the format of a JSON string.\", \"schema\": [\"person\", \"organization\", \"else\", \"location\"], \"input\": \"284 Robert Allenby ( Australia ) 69 71 71 73 , Miguel Angel Martin ( Spain ) 75 70 71 68 ( Allenby won at first play-off hole )\"}"
121
  sintruct = '[INST] ' + system_prompt + sintruct + '[/INST]'
122
 
123
- input_ids = tokenizer.encode(sintruct, return_tensors="pt")
124
  input_length = input_ids.size(1)
125
  generation_output = model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_length=1024, max_new_tokens=512, return_dict_in_generate=True))
126
  generation_output = generation_output.sequences[0]
 
89
  GenerationConfig,
90
  BitsAndBytesConfig
91
  )
92
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
93
  model_path = 'zjunlp/OneKE'
94
  config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
95
  tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 
120
  sintruct = "{\"instruction\": \"You are an expert in named entity recognition. Please extract entities that match the schema definition from the input. Return an empty list if the entity type does not exist. Please respond in the format of a JSON string.\", \"schema\": [\"person\", \"organization\", \"else\", \"location\"], \"input\": \"284 Robert Allenby ( Australia ) 69 71 71 73 , Miguel Angel Martin ( Spain ) 75 70 71 68 ( Allenby won at first play-off hole )\"}"
121
  sintruct = '[INST] ' + system_prompt + sintruct + '[/INST]'
122
 
123
+ input_ids = tokenizer.encode(sintruct, return_tensors="pt").to(device)
124
  input_length = input_ids.size(1)
125
  generation_output = model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_length=1024, max_new_tokens=512, return_dict_in_generate=True))
126
  generation_output = generation_output.sequences[0]