ZJU-Fangyin
commited on
Commit
•
5f7be17
1
Parent(s):
58a67ce
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,76 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
## Model description
|
6 |
+
This repo contains a large molecular generative model built with molecular language SELFIES.
|
7 |
+
|
8 |
+
## Intended uses
|
9 |
+
You can use the model to generate molecules from scratch (i.e., inputting the bos_token), or input a partial structure for the model to complete.
|
10 |
+
|
11 |
+
## How to use
|
12 |
+
We have provided two types of examples. You can modify the input, generation parameters, etc., according to your needs.
|
13 |
+
|
14 |
+
- Denovo molecule generation example:
|
15 |
+
```python
|
16 |
+
from transformers import AutoTokenizer, LlamaForCausalLM
|
17 |
+
import torch
|
18 |
+
|
19 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("zjunlp/MolGen-7b")
|
20 |
+
>>> model = LlamaForCausalLM.from_pretrained(
|
21 |
+
"zjunlp/MolGen-7b",
|
22 |
+
load_in_8bit=True,
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
device_map="auto",
|
25 |
+
)
|
26 |
+
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
+
>>> sf_input = tokenizer(tokenizer.bos_token, return_tensors="pt").to(device)
|
28 |
+
|
29 |
+
>>> molecules = model.generate(input_ids=sf_input["input_ids"],
|
30 |
+
attention_mask=sf_input["attention_mask"],
|
31 |
+
do_sample=True,
|
32 |
+
max_new_tokens=10,
|
33 |
+
top_p=0.75,
|
34 |
+
top_k=30,
|
35 |
+
return_dict_in_generate=False,
|
36 |
+
num_return_sequences=5,
|
37 |
+
)
|
38 |
+
>>> sf_output = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True).replace(" ","") for g in molecules]
|
39 |
+
['[C][C][=C][C][=C][Branch2][Ring1][=Branch2][C][=Branch1]',
|
40 |
+
'[C][N][C][C][C][Branch2][Ring2][Ring2][N][C]',
|
41 |
+
'[C][O][C][=C][C][=C][C][Branch2][Ring1][Branch1]',
|
42 |
+
'[C][N][C][C][C@H1][Branch2][Ring1][Branch2][N][Branch1]',
|
43 |
+
'[C][=C][C][Branch2][Ring1][#C][C][=Branch1][C][=O]']
|
44 |
+
```
|
45 |
+
|
46 |
+
- Molecular completion example:
|
47 |
+
```python
|
48 |
+
from transformers import AutoTokenizer, LlamaForCausalLM
|
49 |
+
import torch
|
50 |
+
|
51 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("zjunlp/MolGen-7b")
|
52 |
+
>>> model = LlamaForCausalLM.from_pretrained(
|
53 |
+
"zjunlp/MolGen-7b",
|
54 |
+
load_in_8bit=True,
|
55 |
+
torch_dtype=torch.float16,
|
56 |
+
device_map="auto",
|
57 |
+
)
|
58 |
+
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
+
>>> sf_input = tokenizer("[C][N][O]", return_tensors="pt").to(device)
|
60 |
+
|
61 |
+
>>> molecules = model.generate(input_ids=sf_input["input_ids"],
|
62 |
+
attention_mask=sf_input["attention_mask"],
|
63 |
+
do_sample=True,
|
64 |
+
max_new_tokens=10,
|
65 |
+
top_p=0.75,
|
66 |
+
top_k=30,
|
67 |
+
return_dict_in_generate=False,
|
68 |
+
num_return_sequences=5,
|
69 |
+
)
|
70 |
+
>>> sf_output = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True).replace(" ","") for g in molecules]
|
71 |
+
['[C][N][O][C][=Branch1][C][=O][/C][Ring1][=Branch1][=C][/C][=C]',
|
72 |
+
'[C][N][O][/C][=Branch1][#Branch1][=C][/N][Branch1][C][C][C][C]',
|
73 |
+
'[C][N][O][/C][=C][/C][=C][C][=Branch1][C][=O][C][=C]',
|
74 |
+
'[C][N][O][C][=Branch1][C][=O][N][Branch1][C][C][C][=Branch1]',
|
75 |
+
'[C][N][O][Ring1][Branch1][C][C][C][C][C][C][C][C]']
|
76 |
+
```
|