LML-diffusion-sampler / scripts /control_net_pose.py
王方懿康
Initial commit
ab2369a
import sys
import torch
import os
import json
import argparse
sys.path.append(os.getcwd())
from PIL import Image
import torchvision.transforms as transforms
import numpy as np
import glob
from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
from diffusers import PNDMScheduler, UniPCMultistepScheduler,DDIMScheduler
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel
from scheduler.scheduling_dpmsolver_multistep_lm import DPMSolverMultistepLMScheduler
from scheduler.scheduling_ddim_lm import DDIMLMScheduler
from controlnet_aux import OpenposeDetector
import cv2
import numpy as np
def main():
parser = argparse.ArgumentParser(description="sampling script for ControlNet-pose.")
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--num_inference_steps', type=int, default=20)
parser.add_argument('--guidance', type=float, default=7.5)
parser.add_argument('--sampler_type', type = str,default='lag')
parser.add_argument('--prompt', type=str, default='an asian girl')
parser.add_argument('--lamb', type=float, default=5.0)
parser.add_argument('--kappa', type=float, default=0.0)
parser.add_argument('--freeze', type=float, default=0.0)
parser.add_argument('--prompt_list', nargs='+', type=str,
default=['an asian girl'])
parser.add_argument('--save_dir', type=str, default='/xxx/xxx/result/0402')
parser.add_argument('--controlnet_dir', type=str, default="lllyasviel/sd-controlnet-openpose")
parser.add_argument('--sd_dir', type=str, default="/xxx/xxx/stable-diffusion-v1-5")
args = parser.parse_args()
if args.sampler_type in ['bdia']:
parser.add_argument('--bdia_gamma', type=float, default=0.5)
if args.sampler_type in ['edict']:
parser.add_argument('--edict_p', type=float, default=0.93)
args = parser.parse_args()
device = 'cuda'
sampler_type = args.sampler_type
guidance_scale = args.guidance
num_inference_steps = args.num_inference_steps
lamb = args.lamb
freeze = args.freeze
kappa = args.kappa
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
# torch.manual_seed(args.seed)
controlnet = ControlNetModel.from_pretrained(
args.controlnet_dir, torch_dtype=torch.float16
)
control_pipe = StableDiffusionControlNetPipeline.from_pretrained(
args.sd_dir,
controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
)
control_pipe.enable_model_cpu_offload()
control_pipe.safety_checker = None
if sampler_type in ['dpm_lm']:
control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
control_pipe.scheduler.config.solver_order = 3
control_pipe.scheduler.config.algorithm_type = "dpmsolver"
control_pipe.scheduler.lamb = lamb
control_pipe.scheduler.lm = True
elif sampler_type in ['dpm']:
control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
control_pipe.scheduler.config.solver_order = 3
control_pipe.scheduler.config.algorithm_type = "dpmsolver"
control_pipe.scheduler.lamb = lamb
control_pipe.scheduler.lm = False
elif sampler_type in ['dpm++']:
control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
control_pipe.scheduler.config.solver_order = 3
control_pipe.scheduler.config.algorithm_type = "dpmsolver++"
control_pipe.scheduler.lamb = lamb
control_pipe.scheduler.lm = False
elif sampler_type in ['dpm++_lm']:
control_pipe.scheduler = DPMSolverMultistepLMScheduler.from_config(control_pipe.scheduler.config)
control_pipe.scheduler.config.solver_order = 3
control_pipe.scheduler.config.algorithm_type = "dpmsolver++"
control_pipe.scheduler.lamb = lamb
control_pipe.scheduler.lm = True
elif sampler_type in ['pndm']:
control_pipe.scheduler = PNDMScheduler.from_config(control_pipe.scheduler.config)
elif sampler_type in ['ddim']:
control_pipe.scheduler = DDIMScheduler.from_config(control_pipe.scheduler.config)
# control_pipe.scheduler.lamb = lamb
# control_pipe.scheduler.lm = False
# control_pipe.scheduler.kappa = kappa
elif sampler_type in ['ddim_lm']:
control_pipe.scheduler = DDIMLMScheduler.from_config(control_pipe.scheduler.config)
control_pipe.scheduler.lamb = lamb
control_pipe.scheduler.lm = True
control_pipe.scheduler.kappa = kappa
control_pipe.scheduler.freeze = freeze
elif sampler_type in ['unipc']:
control_pipe.scheduler = UniPCMultistepScheduler.from_config(control_pipe.scheduler.config)
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/person.png")
image = openpose(image)
for prompt, negative_prompt in [["chef in the kitchen",''],
["Captain America", ''],
["Spider-Man", ''],
["Superman", ''],
["Hulk", ''],
["Batman", ''],
["Iron Man", ''],
["Deadpool", ''],
["Winnie-the-Pooh", ''],
["Snow White", ''],
["Buzz Lightyear", ''],
["Cinderella", ''],
["Donald Duck", ''],
["policeman", ''],
["a doctor", ''],
["a teacher", ''],
['woman standing amidst a sea of wildflowers, with the warm sun shining down on her.',
''],
['a stunning Arabic woman dressed in traditional clothing', ''],
['a stunning Asian woman dressed in traditional clothing', ''],
]:
for seed in range(15):
torch.manual_seed(seed)
res = control_pipe(
prompt = prompt, image=image, num_inference_steps=num_inference_steps,
).images[0]
res.save(os.path.join(save_dir,
f"{prompt[:20]}_seed{seed}_{sampler_type}_infer{num_inference_steps}_g{guidance_scale}_lamb{args.lamb}.png"))
if __name__ == '__main__':
main()