|
from projects.llava_sam2.models.sam2 import SAM2 |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
|
|
IMG_PATH = 'assets/view.jpg' |
|
IMG_SIZE = 1024 |
|
img_mean=(0.485, 0.456, 0.406) |
|
img_std=(0.229, 0.224, 0.225) |
|
|
|
|
|
def prepare(): |
|
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
prepare() |
|
model = SAM2() |
|
model.eval() |
|
model.to(torch.device('cuda')) |
|
|
|
|
|
img_pil = Image.open(IMG_PATH) |
|
img_np = np.array(img_pil.convert("RGB").resize((IMG_SIZE, IMG_SIZE))) |
|
if img_np.dtype == np.uint8: |
|
img_np = img_np / 255.0 |
|
else: |
|
raise NotImplementedError |
|
img = torch.from_numpy(img_np).permute(2, 0, 1) |
|
|
|
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] |
|
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] |
|
img -= img_mean |
|
img /= img_std |
|
|
|
images = img.unsqueeze(0).repeat(5, 1, 1, 1) |
|
|
|
|
|
|
|
language_embd = torch.ones((1, 1, 256), dtype=torch.float32, device=torch.device('cuda')) |
|
a = model.inject_language_embd(images, language_embd) |
|
print(1) |
|
|