from projects.llava_sam2.models.sam2 import SAM2 import numpy as np from PIL import Image import torch IMG_PATH = 'assets/view.jpg' IMG_SIZE = 1024 img_mean=(0.485, 0.456, 0.406) img_std=(0.229, 0.224, 0.225) def prepare(): torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True if __name__ == '__main__': prepare() model = SAM2() model.eval() model.to(torch.device('cuda')) img_pil = Image.open(IMG_PATH) img_np = np.array(img_pil.convert("RGB").resize((IMG_SIZE, IMG_SIZE))) if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images img_np = img_np / 255.0 else: raise NotImplementedError img = torch.from_numpy(img_np).permute(2, 0, 1) img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] img -= img_mean img /= img_std images = img.unsqueeze(0).repeat(5, 1, 1, 1) # Start language_embd = torch.ones((1, 1, 256), dtype=torch.float32, device=torch.device('cuda')) a = model.inject_language_embd(images, language_embd) print(1)