DenseLabelDev / run_object_level_mask.py
zhouyik's picture
Upload folder using huggingface_hub
032e687 verified
import os
from pycocotools import mask as mask_util
import json
import numpy as np
import cv2
from distinctipy import distinctipy
import matplotlib.pyplot as plt
from PIL import Image
from types import MethodType
import json
import random
import sys
import torch
import torchvision
from detectron2.data import MetadataCatalog
from detectron2.structures import BitMasks, PolygonMasks
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.data.detection_utils import read_image
from fvcore.common.timer import Timer
from third_parts.APE.build_ape import build_ape_predictor
from third_parts.recognize_anything.build_ram_plus import build_ram_predictor
from third_parts.segment_anything import build_sam_vit_h, SamPredictor, SamAutomaticMaskGenerator
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def sample_points(box, mask, min_points=3, max_points=16):
x0, y0, w, h = box
aspect_ratio = w / h
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_points, max_points + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_points and i * j >= min_points)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, w, h, 50)
width_bin = w / target_aspect_ratio[0]
height_bin = h / target_aspect_ratio[1]
ret_points = []
for wi in range(target_aspect_ratio[0]):
xi = x0 + (wi+0.5) * width_bin
for hi in range(target_aspect_ratio[1]):
yi = y0 + (hi+0.5) * height_bin
if mask[int(yi), int(xi)] > 0:
ret_points.append((xi, yi))
# if len(ret_points) < min_points:
temp_points = []
for wi in range(int(x0), int(x0+w)):
for hi in range(int(y0), int(y0+h)):
if mask[int(hi), int(wi)] > 0:
temp_points.append((wi, hi))
if len(temp_points)//max_points < 1:
uniform_indices = list(range(0, len(temp_points)))
else:
uniform_indices = list(range(0, len(temp_points), len(temp_points)//max_points))
additional_points = [temp_points[uniform_idx] for uniform_idx in uniform_indices[1:-1]]
# ret_points = [temp_points[uniform_indices[1]], temp_points[uniform_indices[2]], temp_points[uniform_indices[3]]]
ret_points = ret_points + additional_points
return ret_points
def mask_iou(masks, chunk_size=50, chunk_mode=False):
masks1 = masks.unsqueeze(1).char() # n, 1, h, w
masks2 = masks.unsqueeze(0).char() # 1, n, h, w
if not chunk_mode:
intersection = (masks1 * masks2)
union = (masks1 + masks2 - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
return intersection, union
def chunk_mask_iou(_chunk_size=50):
num_chunks = masks1.shape[0] // _chunk_size
if masks1.shape[0] % _chunk_size > 0:
num_chunks += 1
row_chunks_intersection, row_chunks_union = [], []
for row_idx in range(num_chunks):
col_chunks_intersection, col_chunks_union = [], []
masks1_chunk = masks1[row_idx*_chunk_size:(row_idx+1)*_chunk_size]
for col_idx in range(num_chunks):
masks2_chunk = masks2[:, col_idx*_chunk_size:(col_idx+1)*_chunk_size]
try:
intersection = masks1_chunk * masks2_chunk
temp_sum = masks1_chunk + masks2_chunk
union = (temp_sum - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
except torch.cuda.OutOfMemoryError:
return False, None, None
col_chunks_intersection.append(intersection)
col_chunks_union.append(union)
row_chunks_intersection.append(torch.cat(col_chunks_intersection, dim=1))
row_chunks_union.append(torch.cat(col_chunks_union, dim=1))
intersection = torch.cat(row_chunks_intersection, dim=0)
union = torch.cat(row_chunks_union, dim=0)
return True, intersection, union
for c_size in [chunk_size, chunk_size//2, chunk_size//4]:
is_ok, intersection, union = chunk_mask_iou(c_size)
if not is_ok:
continue
return intersection, union
def mask_iou_v2(masks1, masks2, chunk_size=50, chunk_mode=False):
masks1 = masks1.unsqueeze(1).char() # n, 1, h, w
masks2 = masks2.unsqueeze(0).char() # 1, m, h, w
if not chunk_mode:
intersection = (masks1 * masks2)
union = (masks1 + masks2 - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
return intersection, union
def chunk_mask_iou(_chunk_size=50):
num_chunks1 = masks1.shape[0] // _chunk_size
if masks1.shape[0] % _chunk_size > 0:
num_chunks1 += 1
num_chunks2 = masks2.shape[1] // _chunk_size
if masks2.shape[0] % _chunk_size > 0:
num_chunks2 += 1
row_chunks_intersection, row_chunks_union = [], []
for row_idx in range(num_chunks1):
col_chunks_intersection, col_chunks_union = [], []
masks1_chunk = masks1[row_idx*_chunk_size:(row_idx+1)*_chunk_size]
for col_idx in range(num_chunks2):
masks2_chunk = masks2[:, col_idx*_chunk_size:(col_idx+1)*_chunk_size]
try:
intersection = masks1_chunk * masks2_chunk
temp_sum = masks1_chunk + masks2_chunk
union = (temp_sum - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
except torch.cuda.OutOfMemoryError:
return False, None, None
col_chunks_intersection.append(intersection)
col_chunks_union.append(union)
row_chunks_intersection.append(torch.cat(col_chunks_intersection, dim=1))
row_chunks_union.append(torch.cat(col_chunks_union, dim=1))
intersection = torch.cat(row_chunks_intersection, dim=0)
union = torch.cat(row_chunks_union, dim=0)
return True, intersection, union
for c_size in [chunk_size, chunk_size//2, chunk_size//4]:
is_ok, intersection, union = chunk_mask_iou(c_size)
if not is_ok:
continue
return intersection, union
return intersection, union
def mask_area(masks, chunk_size=50, chunk_mode=False):
if not chunk_mode:
return masks.sum(-1).sum(-1)
num_chunks = masks.shape[0] // chunk_size
if masks.shape[0] % chunk_size > 0:
num_chunks += 1
areas = []
for i in range(num_chunks):
masks_i = masks[i*chunk_size:(i+1)*chunk_size]
areas.append(masks_i.sum(-1).sum(-1))
return torch.cat(areas, dim=0)
from detectron2.utils.visualizer import GenericMask
import matplotlib.colors as mplc
def draw_instance_predictions_cache(self, labels, np_masks, jittering: bool = True):
"""
Draw instance-level prediction results on an image.
Args:
predictions (Instances): the output of an instance detection/segmentation
model. Following fields will be used to draw:
"pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
jittering: if True, in color mode SEGMENTATION, randomly jitter the colors per class
to distinguish instances from the same class
Returns:
output (VisImage): image object with visualizations.
"""
boxes = None
scores = None
classes = None
keypoints = None
masks = [GenericMask(x, self.output.height, self.output.width) for x in np_masks]
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
colors = (
[self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes]
if jittering
else [
tuple(mplc.to_rgb([x / 255 for x in self.metadata.thing_colors[c]]))
for c in classes
]
)
alpha = 0.8
else:
colors = None
alpha = 0.5
self.overlay_instances(
masks=masks,
boxes=boxes,
labels=labels,
keypoints=keypoints,
assigned_colors=colors,
alpha=alpha,
)
return self.output
def merge_sa1b_image(image_file, anno_file, save_path, generated_annos, visualize=False):
file_name = os.path.basename(image_file).split('.')[0]
if anno_file is not None:
with open(anno_file, 'r') as f:
json_results = json.load(f)
generated_annos = json_results["annotations"]
assert generated_annos is not None, "Provide valid annotation file or generated_annos from sam automatic generator."
_all_sam_masks, predicted_iou_scores = [], []
for object_anno in generated_annos:
object_mask = object_anno["segmentation"]
if isinstance(object_mask["counts"], list):
object_mask = mask_util.frPyObjects(object_mask, object_mask["size"][0], object_mask["size"][1])
mask = mask_util.decode(object_mask)
mask = mask.astype(np.uint8).squeeze()
_all_sam_masks.append(torch.from_numpy(mask))
predicted_iou_scores.append(object_anno['predicted_iou'])
#TODO sorted the masks list according to the iou score from high to low
sorted_idx = sorted(range(len(predicted_iou_scores)), key=lambda k: predicted_iou_scores[k], reverse=True)
all_sam_masks = []
for idx in sorted_idx:
all_sam_masks.append(_all_sam_masks[idx])
all_sam_masks = torch.stack(all_sam_masks)
ori_height, ori_width = all_sam_masks.shape[-2:]
downsampled_sam_masks = torch.nn.functional.interpolate(all_sam_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_sam_masks = (downsampled_sam_masks[0] > 0.5).to(all_sam_masks.dtype).to("cuda")
intersection, union = mask_iou(downsampled_sam_masks, chunk_size=100, chunk_mode=True)
mask_iou_matrix = intersection / union
# nms
num_instances = len(mask_iou_matrix)
keep = [True] * num_instances
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(ins_i, num_instances):
if ins_j == ins_i:
continue
if mask_iou_matrix[ins_i, ins_j] > 0.8:
keep[ins_j] = False
# merge
# area = downsampled_sam_masks.sum(-1).sum(-1)
area = mask_area(downsampled_sam_masks, chunk_mode=True, chunk_size=100)
roc = intersection / area[:, None]
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(num_instances):
if ins_i == ins_j:
continue
if not keep[ins_j]:
continue
if roc[ins_i, ins_j] > 0.8:
keep[ins_i] = False
break
left_masks = [all_sam_masks[ins_i] for ins_i in range(len(keep)) if keep[ins_i]]
left_tags = ['object' for _ in range(len(left_masks))]
unique_tags = list(set(left_tags))
text_prompt = ','.join(unique_tags)
metadata = MetadataCatalog.get("__unused_ape_" + text_prompt)
metadata.thing_classes = unique_tags
metadata.stuff_classes = unique_tags
if not visualize:
return torch.stack(left_masks)
def run_on_image_v2(image_file, anno_file, save_path, ram_predictor, ape_predictor, sam_predictor, sam_auto_mask_generator, visualize=False):
if not os.path.exists(image_file):
return None
file_name = os.path.basename(image_file).split('.')[0]
if (anno_file is None) or (not os.path.exists(anno_file)):
image = cv2.imread(image_file)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
generated_annos = sam_auto_mask_generator.generate(image)
sam_masks = merge_sa1b_image(image_file, None, save_path, generated_annos, visualize=False)
else:
sam_masks = merge_sa1b_image(image_file, anno_file, save_path, None, visualize=False)
ape_masks, ape_tags = run_on_image(image_file, save_path, ram_predictor, ape_predictor, sam_predictor, visualize=False)
if ape_masks is None:
return None
sam_image = cv2.imread(image_file)
ori_height, ori_width = sam_image.shape[:2]
sam_image = cv2.cvtColor(sam_image, cv2.COLOR_BGR2RGB)
sam_predictor.set_image(sam_image) # has been set in the `run_on_image` function
ori_height, ori_width = sam_masks.shape[-2:]
downsampled_sam_masks = torch.nn.functional.interpolate(sam_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_sam_masks = (downsampled_sam_masks[0] > 0.5).to(sam_masks.dtype).to("cuda")
downsampled_ape_masks = torch.nn.functional.interpolate(ape_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_ape_masks = (downsampled_ape_masks[0] > 0.5).to(ape_masks.dtype).to("cuda")
sam_ape_masks_intersection, sam_ape_masks_union = mask_iou_v2(downsampled_sam_masks, downsampled_ape_masks, chunk_size=100, chunk_mode=True)
sam_ape_masks_iou = sam_ape_masks_intersection / sam_ape_masks_union
# sam_area = downsampled_sam_masks.sum(-1).sum(-1)
sam_area = mask_area(downsampled_sam_masks, chunk_mode=True, chunk_size=100)
sam_masks_roc = sam_ape_masks_intersection / sam_area[:, None]
sam_boxes = torchvision.ops.masks_to_boxes(sam_masks)
ape_boxes = torchvision.ops.masks_to_boxes(ape_masks)
first_round_masks = []
iou_target_indices = torch.argmax(sam_ape_masks_iou, dim=1)
roc_target_indices = torch.argmax(sam_masks_roc, dim=1)
for sam_idx in range(downsampled_sam_masks.shape[0]):
iou_tgt_idx = iou_target_indices[sam_idx]
roc_tgt_idx = roc_target_indices[sam_idx]
if sam_ape_masks_iou[sam_idx, iou_tgt_idx] > 0.8:
first_round_masks.append(sam_masks[sam_idx])
elif sam_masks_roc[sam_idx, roc_tgt_idx] > 0.8:
# sam mask inside ape mask
box_x1, box_y1, box_x2, box_y2 = sam_boxes[sam_idx]
box_w = box_x2 - box_x1
box_h = box_y2 - box_y1
ret_points = sample_points([box_x1, box_y1, box_w, box_h], sam_masks[sam_idx], min_points=1, max_points=3)
if len(ret_points) == 0 :
first_round_masks.append(sam_masks[sam_idx])
else:
point_labels = [1 for _ in range(len(ret_points))]
temp_masks, scores, _ = sam_predictor.predict(
point_coords=np.array(ret_points),
point_labels=np.array(point_labels),
multimask_output=True,
)
temp_masks = torch.from_numpy(temp_masks)
downsampled_temp_masks = torch.nn.functional.interpolate(temp_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_temp_masks = (downsampled_temp_masks[0] > 0.5).to(temp_masks.dtype).to("cuda")
downsampled_ape_mask = downsampled_ape_masks[roc_tgt_idx][None]
ape_temp_masks_intersection, ape_temp_masks_union = mask_iou_v2(downsampled_ape_mask, downsampled_temp_masks)
ape_temp_masks_iou = ape_temp_masks_intersection / ape_temp_masks_union
iou_temp_indices = torch.argmax(ape_temp_masks_iou, dim=1)
iou_temp_idx = iou_temp_indices[0]
if ape_temp_masks_iou[0, iou_temp_idx] > 0.8 and scores[iou_temp_idx] > 0.9:
first_round_masks.append(temp_masks[iou_temp_idx])
else:
first_round_masks.append(sam_masks[sam_idx])
else:
# first_round_masks.append(sam_masks[sam_idx])
box_x1, box_y1, box_x2, box_y2 = sam_boxes[sam_idx]
box_w = box_x2 - box_x1
box_h = box_y2 - box_y1
ret_points = sample_points([box_x1, box_y1, box_w, box_h], sam_masks[sam_idx], min_points=1, max_points=3)
if len(ret_points) == 0:
first_round_masks.append(sam_masks[sam_idx])
else:
point_labels = [1 for _ in range(len(ret_points))]
temp_masks, scores, _ = sam_predictor.predict(
point_coords=np.array(ret_points),
point_labels=np.array(point_labels),
multimask_output=True,
)
temp_masks = torch.from_numpy(temp_masks)
temp_masks_area = temp_masks.sum(-1).sum(-1)
tgt_idx = torch.argmax(temp_masks_area)
if scores[tgt_idx] > 0.9:
first_round_masks.append(temp_masks[tgt_idx])
else:
first_round_masks.append(sam_masks[sam_idx])
ape_sam_masks_intersection, ape_sam_masks_union = sam_ape_masks_intersection.transpose(0, 1), sam_ape_masks_union.transpose(0, 1)
# ape_area = ape_masks.sum(-1).sum(-1)
ape_area = mask_area(downsampled_ape_masks, chunk_mode=True, chunk_size=100)
ape_masks_roc = ape_sam_masks_intersection / ape_area[:, None]
roc_target_indices = torch.argmax(ape_masks_roc, dim=1)
for ape_idx in range(ape_masks.shape[0]):
roc_tgt_idx = roc_target_indices[ape_idx]
if ape_masks_roc[ape_idx, roc_tgt_idx] < 0.2:
if sam_masks_roc[roc_tgt_idx, ape_idx] < 0.2:
box_x1, box_y1, box_x2, box_y2 = ape_boxes[ape_idx]
box_w = box_x2 - box_x1
box_h = box_y2 - box_y1
ret_points = sample_points([box_x1, box_y1, box_w, box_h], ape_masks[ape_idx], min_points=3, max_points=16)
if len(ret_points) == 0:
first_round_masks.append(ape_masks[ape_idx])
else:
point_labels = [1 for _ in range(len(ret_points))]
temp_masks, scores, _ = sam_predictor.predict(
point_coords=np.array(ret_points),
point_labels=np.array(point_labels),
multimask_output=False,
)
temp_masks = torch.from_numpy(temp_masks)
if scores[0] > 0.9:
first_round_masks.append(temp_masks[0])
else:
first_round_masks.append(ape_masks[ape_idx])
else:
# some sam masks inside ape masks, but they are not in object-level
box_x1, box_y1, box_x2, box_y2 = ape_boxes[ape_idx]
box_w = box_x2 - box_x1
box_h = box_y2 - box_y1
ret_points = sample_points([box_x1, box_y1, box_w, box_h], ape_masks[ape_idx], min_points=3, max_points=8)
for point in ret_points:
temp_masks, scores, _ = sam_predictor.predict(
point_coords=np.array([point]),
point_labels=np.array([1]),
multimask_output=True,
)
temp_masks = torch.from_numpy(temp_masks)
downsampled_temp_masks = torch.nn.functional.interpolate(temp_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_temp_masks = (downsampled_temp_masks[0] > 0.5).to(temp_masks.dtype).to("cuda")
downsampled_ape_mask = downsampled_ape_masks[ape_idx][None]
ape_temp_masks_intersection, ape_temp_masks_union = mask_iou_v2(downsampled_ape_mask, downsampled_temp_masks)
ape_temp_masks_iou = ape_temp_masks_intersection / ape_temp_masks_union
iou_temp_indices = torch.argmax(ape_temp_masks_iou, dim=1)
iou_temp_idx = iou_temp_indices[0]
if ape_temp_masks_iou[0, iou_temp_idx] > 0.8:
first_round_masks.append(ape_masks[ape_idx])
# first_round_scores = [mask.sum(-1).sum(-1) for mask in first_round_masks]
first_round_scores = mask_area(torch.stack(first_round_masks), chunk_mode=True, chunk_size=100)
sorted_idx = sorted(range(len(first_round_masks)), key=lambda k: first_round_scores[k], reverse=True)
sorted_first_round_masks = []
for idx in sorted_idx:
sorted_first_round_masks.append(first_round_masks[idx])
sorted_first_round_masks = torch.stack(sorted_first_round_masks)
downsampled_first_round_masks = torch.nn.functional.interpolate(sorted_first_round_masks[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_first_round_masks = (downsampled_first_round_masks[0] > 0.5).to(sorted_first_round_masks.dtype)
intersection, union = mask_iou(downsampled_first_round_masks, chunk_mode=True, chunk_size=100)
mask_iou_matrix = intersection / union
# nms
num_instances = len(mask_iou_matrix)
keep = [True] * num_instances
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(ins_i, num_instances):
if ins_j == ins_i:
continue
if mask_iou_matrix[ins_i, ins_j] > 0.8:
keep[ins_j] = False
# merge
# area = downsampled_first_round_masks.sum(-1).sum(-1)
area = mask_area(downsampled_first_round_masks, chunk_mode=True, chunk_size=100)
roc = intersection / area[:, None]
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(num_instances):
if ins_i == ins_j:
continue
if not keep[ins_j]:
continue
if roc[ins_i, ins_j] > 0.5:
keep[ins_i] = False
break
left_masks = [sorted_first_round_masks[ins_i] for ins_i in range(len(keep)) if keep[ins_i]]
if visualize:
left_tags = ['object' for _ in range(len(left_masks))]
unique_tags = list(set(left_tags))
text_prompt = ','.join(unique_tags)
metadata = MetadataCatalog.get("__unused_ape_" + text_prompt)
metadata.thing_classes = unique_tags
metadata.stuff_classes = unique_tags
result_masks = torch.stack(left_masks).cpu().numpy()
input_image = read_image(image_file, format="BGR")
visualizer = Visualizer(input_image[:, :, ::-1], metadata, instance_mode=ColorMode.IMAGE)
visualizer.draw_instance_predictions = MethodType(draw_instance_predictions_cache, visualizer)
vis_output = visualizer.draw_instance_predictions(labels=left_tags, np_masks=result_masks)
output_image = vis_output.get_image()
output_image = Image.fromarray(output_image)
final_out_path = "./work_dirs/visualize_object_level"
if not os.path.exists(final_out_path):
os.makedirs(final_out_path)
output_image.save(os.path.join(final_out_path, file_name+'.jpg'))
else:
result_masks = torch.stack(left_masks).cpu().numpy()
save_json_results = []
for ins_i, mask in enumerate(result_masks):
rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
rle["counts"] = rle["counts"].decode("utf-8")
save_json_results.append({
"ins_id": ins_i,
"segmentation": rle,
})
with open(os.path.join(save_path, file_name+'.json'), 'w') as f:
json.dump(save_json_results, f)
def run_on_image(image_file, save_path, ram_predictor, ape_predictor, sam_predictor, visualize=False):
res = ram_predictor.run_on_image(image_file_path=image_file, dynamic_resolution=True)
tag_list = []
for tag_string in res[0]:
tags = tag_string.split(' | ')
tag_list += tags
tags = list(set(tag_list))
text_prompt = ','.join(tags)
output_image, json_results = ape_predictor.run_on_image(
image_file,
input_text=text_prompt,
visualize=True,
score_threhold=0.1,
output_type=["instance segmentation"],
)
if visualize:
file_name = os.path.basename(image_file).split('.')[0]
raw_ape_out_path = os.path.join(save_path, 'raw_ape_out_0116')
if not os.path.exists(raw_ape_out_path):
os.makedirs(raw_ape_out_path)
output_image.save(os.path.join(raw_ape_out_path, file_name+'.jpg'))
# sam segment
# colors = distinctipy.get_colors(len(json_results)+1)
sam_image = cv2.imread(image_file)
ori_height, ori_width = sam_image.shape[:2]
sam_image = cv2.cvtColor(sam_image, cv2.COLOR_BGR2RGB)
sam_predictor.set_image(sam_image)
new_masks_from_sam = []
correspondding_tags = []
correspondding_scores = [] # the scores has been sorted inside the APE
for idx, item in enumerate(json_results):
object_mask = item["segmentation"]
if isinstance(object_mask["counts"], list):
object_mask = mask_util.frPyObjects(object_mask, object_mask["size"][0], object_mask["size"][1])
mask = mask_util.decode(object_mask)
mask = mask.astype(np.uint8).squeeze()
box = item["bbox"]
ret_points = sample_points(box, mask)
if len(ret_points) == 0:
continue
mask_h, mask_w = object_mask["size"]
input_point, input_label = [], []
for point in ret_points:
_x = point[0] / mask_w * ori_width
_y = point[1] / mask_h * ori_height
input_point.append([int(_x), int(_y)])
input_label.append(1)
masks, scores, logits = sam_predictor.predict(
point_coords=np.array(input_point),
point_labels=np.array(input_label),
multimask_output=False
)
new_masks_from_sam.append(torch.from_numpy(masks))
correspondding_tags.append(item["category_name"])
correspondding_scores.append(item["score"])
if len(new_masks_from_sam) == 0:
return None, None
new_masks_from_sam = torch.cat(new_masks_from_sam)
downsampled_new_masks_from_sam = torch.nn.functional.interpolate(new_masks_from_sam[None].to(torch.float32), size=(ori_height//4, ori_width//4), mode="bilinear")
downsampled_new_masks_from_sam = (downsampled_new_masks_from_sam[0] > 0.5).to(new_masks_from_sam.dtype).to("cuda")
intersection, union = mask_iou(downsampled_new_masks_from_sam, chunk_mode=True, chunk_size=100)
mask_iou_matrix = intersection / union
# nms
num_instances = len(mask_iou_matrix)
keep = [True] * num_instances
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(ins_i, num_instances):
if ins_j == ins_i:
continue
if mask_iou_matrix[ins_i, ins_j] > 0.8:
keep[ins_j] = False
# merge
# area = downsampled_new_masks_from_sam.sum(-1).sum(-1)
area = mask_area(downsampled_new_masks_from_sam, chunk_mode=True, chunk_size=100)
roc = intersection / area[:, None]
for ins_i in range(num_instances):
if not keep[ins_i]:
continue
for ins_j in range(num_instances):
if ins_i == ins_j:
continue
if not keep[ins_j]:
continue
if roc[ins_i, ins_j] > 0.8:
keep[ins_i] = False
break
left_masks = [new_masks_from_sam[ins_i] for ins_i in range(len(keep)) if keep[ins_i]]
left_masks = torch.stack(left_masks)
left_boxes = torchvision.ops.masks_to_boxes(left_masks)
left_tags = [correspondding_tags[ins_i] for ins_i in range(len(keep)) if keep[ins_i]]
# zoom in
result_mask_list = []
result_tag_list = []
ori_image = Image.open(image_file)
for ins_i, ins_box in enumerate(left_boxes):
ins_box = ins_box.numpy().tolist()
box_w = ins_box[2] - ins_box[0]
box_h = ins_box[3] - ins_box[1]
loose_box_x0 = int(ins_box[0] - box_w // 4)
loose_box_y0 = int(ins_box[1] - box_h // 4)
loose_box_x1 = int(ins_box[2] + box_w // 4)
loose_box_y1 = int(ins_box[3] + box_h // 4)
loose_box_x0 = loose_box_x0 if loose_box_x0 > 0 else 0
loose_box_y0 = loose_box_y0 if loose_box_y0 > 0 else 0
loose_box_x1 = loose_box_x1 if loose_box_x1 < ori_width else ori_width
loose_box_y1 = loose_box_y1 if loose_box_y1 < ori_height else ori_height
loose_box_w = loose_box_x1 - loose_box_x0
loose_box_h = loose_box_y1 - loose_box_y0
assert loose_box_w >= box_w and loose_box_h >= box_h
if loose_box_w < 256:
padded_length_w = 256 - loose_box_w
left_padded = padded_length_w // 2
right_padded = padded_length_w - left_padded
if loose_box_x0 - left_padded < 0:
right_padded = right_padded + left_padded - loose_box_x0
left_padded = loose_box_x0
if loose_box_x1 + right_padded > ori_width:
left_padded = left_padded + loose_box_x1 + right_padded - ori_width
right_padded = ori_width - loose_box_x1
loose_box_x0 = int(loose_box_x0 - left_padded)
loose_box_x1 = int(loose_box_x1 + right_padded)
loose_box_x0 = loose_box_x0 if loose_box_x0 > 0 else 0
loose_box_x1 = loose_box_x1 if loose_box_x1 < ori_width else ori_width
if loose_box_h < 256:
padded_length_h = 256 - loose_box_h
top_padded = padded_length_h // 2
bottom_padded = padded_length_h - top_padded
if loose_box_y0 - top_padded < 0:
bottom_padded = bottom_padded + top_padded - loose_box_y0
top_padded = loose_box_y0
if loose_box_y1 + bottom_padded > ori_height:
top_padded = top_padded + loose_box_y1 + bottom_padded - ori_height
bottom_padded = ori_height - loose_box_y1
loose_box_y0 = int(loose_box_y0 - top_padded)
loose_box_y1 = int(loose_box_y1 + bottom_padded)
loose_box_y0 = loose_box_y0 if loose_box_y0 > 0 else 0
loose_box_y1 = loose_box_y1 if loose_box_y1 < ori_height else ori_height
loose_box_w = loose_box_x1 - loose_box_x0
loose_box_h = loose_box_y1 - loose_box_y0
if loose_box_w > loose_box_h:
padded_length_h = loose_box_w - loose_box_h
top_padded = padded_length_h // 2
bottom_padded = padded_length_h - top_padded
if loose_box_y0 - top_padded < 0:
bottom_padded = bottom_padded + top_padded - loose_box_y0
top_padded = loose_box_y0
if loose_box_y1 + bottom_padded > ori_height:
top_padded = top_padded + loose_box_y1 + bottom_padded - ori_height
bottom_padded = ori_height - loose_box_y1
loose_box_y0 = int(loose_box_y0 - top_padded)
loose_box_y1 = int(loose_box_y1 + bottom_padded)
loose_box_y0 = loose_box_y0 if loose_box_y0 > 0 else 0
loose_box_y1 = loose_box_y1 if loose_box_y1 < ori_height else ori_height
elif loose_box_h > loose_box_w:
padded_length_w = loose_box_h - loose_box_w
left_padded = padded_length_w // 2
right_padded = padded_length_w - left_padded
if loose_box_x0 - left_padded < 0:
right_padded = right_padded + left_padded - loose_box_x0
left_padded = loose_box_x0
if loose_box_x1 + right_padded > ori_width:
left_padded = left_padded + loose_box_x1 + right_padded - ori_width
right_padded = ori_width - loose_box_x1
loose_box_x0 = int(loose_box_x0 - left_padded)
loose_box_x1 = int(loose_box_x1 + right_padded)
loose_box_x0 = loose_box_x0 if loose_box_x0 > 0 else 0
loose_box_x1 = loose_box_x1 if loose_box_x1 < ori_width else ori_width
image_patch = ori_image.crop((loose_box_x0, loose_box_y0, loose_box_x1, loose_box_y1))
image_patch_w, image_patch_h = image_patch.size
res = ram_predictor.run_on_image(image_file_path=image_patch, dynamic_resolution=False)
tag_list = []
for tag_string in res[0]:
tags = tag_string.split(' | ')
tag_list += tags
tags = list(set(tag_list))
text_prompt = ','.join(tags)
if image_patch_w > image_patch_h:
rescaled_image_patch_w = 1024
rescaled_image_patch_h = int(image_patch_h / image_patch_w * 1024)
else:
rescaled_image_patch_h = 1024
rescaled_image_patch_w = int(image_patch_w / image_patch_h * 1024)
image_patch = image_patch.resize((rescaled_image_patch_w, rescaled_image_patch_h))
output_image, json_results = ape_predictor.run_on_image(
image_patch,
input_text=text_prompt,
visualize=True,
score_threhold=0.1,
output_type=["instance segmentation"],
)
all_masks, all_tags = [], []
for idx, item in enumerate(json_results):
object_mask = item["segmentation"]
if isinstance(object_mask["counts"], list):
object_mask = mask_util.frPyObjects(object_mask, object_mask["size"][0], object_mask["size"][1])
mask = mask_util.decode(object_mask)
mask = torch.as_tensor(mask.astype(np.uint8))
all_masks.append(mask)
all_tags.append(item['category_name'])
# if len(all_masks) == 0:
# continue
if len(all_masks) == 0:
result_mask_list.append(left_masks[ins_i])
result_tag_list.append(left_tags[ins_i])
continue
all_masks = torch.stack(all_masks)
all_masks_ori_size = torch.nn.functional.interpolate(all_masks.unsqueeze(0), size=(image_patch_h, image_patch_w),
mode='bilinear')
all_masks_ori_size = all_masks_ori_size > 0.4
ori_mask_crop = left_masks[ins_i, loose_box_y0:loose_box_y1, loose_box_x0:loose_box_x1]
# mask iou
masks1 = ori_mask_crop[None, None, :, :].char().to('cuda')
masks2 = all_masks_ori_size.char().to('cuda')
intersection = (masks1 * masks2)
union = (masks1 + masks2 - intersection).sum(-1).sum(-1)
intersection = intersection.sum(-1).sum(-1)
area = masks2.sum(-1).sum(-1)
# area = mask_area(masks2, chunk_mode=True)
masks_iou = intersection / union
target_idx = torch.argmax(masks_iou, dim=1)
if masks_iou[0, target_idx] < 0.8:
temp_result_mask_list = []
temp_result_tag_list = []
for ins_j, mask_j_iou in enumerate(masks_iou[0]):
if mask_j_iou < 0.1:
continue
roc_j = intersection[0, ins_j] / area[0, ins_j]
if roc_j < 0.8:
continue
result_mask = torch.zeros((ori_height, ori_width)).to(all_masks.dtype)
result_mask[loose_box_y0:loose_box_y1, loose_box_x0:loose_box_x1] = all_masks_ori_size[0, ins_j]
temp_result_mask_list.append(result_mask)
temp_result_tag_list.append(all_tags[ins_j])
if len(temp_result_mask_list) > 1:
result_mask_list.extend(temp_result_mask_list)
result_tag_list.extend(temp_result_tag_list)
else:
result_mask_list.append(left_masks[ins_i])
result_tag_list.append(left_tags[ins_i])
else:
result_mask = torch.zeros((ori_height, ori_width)).to(all_masks.dtype)
result_mask[loose_box_y0:loose_box_y1, loose_box_x0:loose_box_x1] = all_masks_ori_size[0, target_idx.item()]
result_mask_list.append(result_mask)
result_tag_list.append(all_tags[target_idx])
unique_tags = list(set(result_tag_list))
text_prompt = ','.join(unique_tags)
metadata = MetadataCatalog.get("__unused_ape_" + text_prompt)
metadata.thing_classes = unique_tags
metadata.stuff_classes = unique_tags
if not visualize:
return torch.stack(result_mask_list), result_tag_list
def main(node_id=0, local_rank=0, work_dir="./work_dirs/object_level"):
global_rank_id = int(node_id * 8 + local_rank)
task_file = f"./work_dirs/object_level_task/rank{global_rank_id}.json"
if not os.path.exists(task_file):
print(f"No task file:{task_file}")
return None
with open(task_file, 'r') as f:
sam_images = json.load(f)
ram_predictor = build_ram_predictor(override_ckpt_file="third_parts/recognize_anything/xinyu1205/recognize-anything-plus-model/ram_plus_swin_large_14m.pth")
ape_predictor = build_ape_predictor(which_categories='COCO',
override_ckpt_file="third_parts/APE/shenyunhang/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k_mdl_20230829_162438/model_final.pth")
sam = build_sam_vit_h("third_parts/zhouyik/zt_any_visual_prompt/sam_vit_h_4b8939.pth")
sam.to(device="cuda")
sam_predictor = SamPredictor(sam)
sam_auto_mask_generator = SamAutomaticMaskGenerator(sam)
timer = Timer()
past_time = 0
total_images = len(sam_images)
for idx, sam_image_file in enumerate(sam_images):
image_name = os.path.basename(sam_image_file).split('.')[0]
dir_name = os.path.dirname(sam_image_file)
sam_anno_file = os.path.join(dir_name, image_name+".json")
save_dir = os.path.join(work_dir, os.path.basename(dir_name))
if os.path.exists(os.path.join(save_dir, image_name+'.json')):
continue
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if random.random() < 0.3:
visualize=True
else:
visualize=False
run_on_image_v2(sam_image_file, sam_anno_file, save_dir,
ram_predictor, ape_predictor, sam_predictor, sam_auto_mask_generator, visualize=visualize)
consume_time = "%.2f" % (timer.seconds() - past_time)
past_time = timer.seconds()
print(f"RANK#{local_rank}: {idx+1}/{total_images}, comsume {consume_time} seconds.")
if __name__ == "__main__":
work_dir, local_rank, node_id = sys.argv[1:]
main(node_id=node_id, local_rank=local_rank, work_dir=work_dir)