|
|
|
import argparse |
|
import json |
|
import math |
|
import os |
|
import os.path as osp |
|
import re |
|
from importlib.metadata import files |
|
|
|
import torch |
|
import tqdm |
|
|
|
from mmengine.dist import (collect_results, get_dist_info, get_rank, init_dist, |
|
master_only) |
|
from mmengine.utils.dl_utils import set_multi_processing |
|
from torch.utils.data import Dataset |
|
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig, CLIPImageProcessor, |
|
CLIPVisionModel, GenerationConfig) |
|
|
|
from xtuner.model.utils import LoadWoInit, prepare_inputs_labels_for_multimodal |
|
from xtuner.tools.utils import get_stop_criteria, is_cn_string |
|
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, |
|
PROMPT_TEMPLATE) |
|
|
|
from xtuner.registry import BUILDER |
|
from xtuner.configs import cfgs_name_path |
|
from xtuner.model.utils import guess_load_checkpoint |
|
from mmengine.config import Config |
|
from mmengine.fileio import PetrelBackend, get_file_backend |
|
from mmengine.config import ConfigDict |
|
|
|
from PIL import Image |
|
import torch.nn.functional as F |
|
from xtuner.dataset.utils import expand2square |
|
from pycocotools import mask as mask_utils |
|
|
|
|
|
def convert_dict2config_dict(input): |
|
input = ConfigDict(**input) |
|
for key in input.keys(): |
|
if isinstance(input[key], dict): |
|
input[key] = convert_dict2config_dict(input[key]) |
|
return input |
|
|
|
TORCH_DTYPE_MAP = dict( |
|
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto') |
|
|
|
|
|
GCG_QUESTIONS = [ |
|
'Could you please give me a detailed description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer.', |
|
'Can you provide a thorough description of the this image? Please output with interleaved segmentation masks for the corresponding phrases.', |
|
'Please describe in detail the contents of the image. Please respond with interleaved segmentation masks for the corresponding parts of the answer.', |
|
'Could you give a comprehensive explanation of what can be found within this picture? Please output with interleaved segmentation masks for the corresponding phrases.', |
|
'Could you give me an elaborate explanation of this picture? Please respond with interleaved segmentation masks for the corresponding phrases.', |
|
'Could you provide me with a detailed analysis of this photo? Please output with interleaved segmentation masks for the corresponding parts of the answer.', |
|
] |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='RefCocoSeg') |
|
parser.add_argument('config', help='config file name or path.') |
|
parser.add_argument('--pth_model', help='pth model file') |
|
parser.add_argument( |
|
'--output-name', type=str, default='gcg', help='save folder name') |
|
parser.add_argument( |
|
'--prompt-template', |
|
choices=PROMPT_TEMPLATE.keys(), |
|
default='internlm2_chat', |
|
help='Specify a prompt template') |
|
parser.add_argument( |
|
'--stop-words', nargs='+', type=str, default=[], help='Stop words') |
|
parser.add_argument( |
|
'--torch-dtype', |
|
default='fp16', |
|
choices=TORCH_DTYPE_MAP.keys(), |
|
help='Override the default `torch.dtype` and load the model under ' |
|
'a specific `dtype`.') |
|
parser.add_argument( |
|
'--bits', |
|
type=int, |
|
choices=[4, 8, None], |
|
default=None, |
|
help='LLM bits') |
|
parser.add_argument( |
|
'--bot-name', type=str, default='BOT', help='Name for Bot') |
|
parser.add_argument( |
|
'--offload-folder', |
|
default=None, |
|
help='The folder in which to offload the model weights (or where the ' |
|
'model weights are already offloaded).') |
|
parser.add_argument( |
|
'--max-new-tokens', |
|
type=int, |
|
default=100, |
|
help='Maximum number of new tokens allowed in generated text') |
|
parser.add_argument( |
|
'--seed', |
|
type=int, |
|
default=0, |
|
help='Random seed for reproducible text generation') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
@master_only |
|
def master_print(msg): |
|
print(msg) |
|
|
|
class GCD_Inference_Dataset(Dataset): |
|
def __init__(self, |
|
image_folder, |
|
debug=False, |
|
metainfo=None, |
|
save_dir=None, |
|
): |
|
self.debug = debug |
|
self.image_folder = image_folder |
|
self.metainfo = metainfo |
|
|
|
self.images = os.listdir(image_folder) |
|
|
|
if save_dir is not None: |
|
|
|
self.save_dir = save_dir |
|
exsits_files = os.listdir(self.save_dir) |
|
exsits_files = [_file[:-5] for _file in exsits_files] |
|
_images = [] |
|
for item in self.images: |
|
if item[:-4] not in exsits_files: |
|
_images.append(item) |
|
self.images = _images |
|
|
|
|
|
if debug: |
|
self.images = self.images[:20] |
|
|
|
def __len__(self): |
|
return len(self.images) |
|
|
|
def get_questions(self): |
|
question = "Could you please give me a detailed description of the image? Please respond with interleaved \ |
|
segmentation masks for the corresponding parts of the answer." |
|
return question |
|
|
|
def __getitem__(self, index): |
|
|
|
data_dict = {} |
|
|
|
questions = self.get_questions() |
|
image_file = self.images[index] |
|
data_dict['image_file'] = image_file |
|
image_file = os.path.join(self.image_folder, image_file) |
|
|
|
image = Image.open(image_file).convert('RGB') |
|
data_dict['pixel_values'] = image |
|
data_dict['ori_image'] = image |
|
data_dict['text_prompts'] = "<image>\n" + questions |
|
ori_width, ori_height = image.size |
|
data_dict['ori_image_size'] = (ori_width, ori_height) |
|
data_dict['img_id'] = image_file |
|
data_dict['mode'] = 'demo' |
|
data_dict['masks'] = 'none' |
|
return data_dict |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
torch.manual_seed(args.seed) |
|
|
|
if args.launcher != 'none': |
|
set_multi_processing(distributed=True) |
|
init_dist(args.launcher) |
|
|
|
rank, world_size = get_dist_info() |
|
torch.cuda.set_device(rank) |
|
else: |
|
rank = 0 |
|
world_size = 1 |
|
|
|
|
|
if not osp.isfile(args.config): |
|
try: |
|
args.config = cfgs_name_path[args.config] |
|
except KeyError: |
|
raise FileNotFoundError(f'Cannot find {args.config}') |
|
|
|
|
|
cfg = Config.fromfile(args.config) |
|
|
|
|
|
|
|
model_name = cfg.model.type if isinstance(cfg.model.type, |
|
str) else cfg.model.type.__name__ |
|
|
|
model = BUILDER.build(cfg.model) |
|
backend = get_file_backend(args.pth_model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(backend, PetrelBackend): |
|
from xtuner.utils.fileio import patch_fileio |
|
with patch_fileio(): |
|
state_dict = guess_load_checkpoint(args.pth_model) |
|
else: |
|
state_dict = guess_load_checkpoint(args.pth_model) |
|
|
|
model.load_state_dict(state_dict, strict=False) |
|
print(f'Load PTH model from {args.pth_model}') |
|
|
|
datasets_configs = cfg.test_dataset |
|
dataset = GCD_Inference_Dataset( |
|
image_folder='./data/glamm_data/images/grandf/val_test/', |
|
debug=False, |
|
metainfo=datasets_configs[0]['metainfo'], |
|
save_dir="./work_dirs/{}/".format(args.output_name), |
|
|
|
) |
|
datasets = [dataset] |
|
|
|
model.cuda() |
|
|
|
|
|
model.eval() |
|
|
|
|
|
for i_dataset, dataset in enumerate(datasets): |
|
model.preparing_for_generation(dataset.metainfo) |
|
results = [] |
|
n_samples = len(dataset) |
|
per_rank_samples = math.ceil(n_samples / world_size) |
|
per_rank_ids = range(per_rank_samples * rank, |
|
min(n_samples, per_rank_samples * (rank + 1))) |
|
for idx in tqdm.tqdm(per_rank_ids): |
|
data_batch = dataset[idx] |
|
prediction = {'img_id': data_batch['img_id']} |
|
outputs = model.predict_forward(**data_batch) |
|
prediction.update(outputs) |
|
results.append(prediction) |
|
if 'prediction_masks' not in prediction.keys(): |
|
print("No SEG !!!") |
|
print(prediction['prediction']) |
|
w, h = data_batch['ori_image_size'] |
|
prediction['prediction_masks'] = torch.zeros((0, h, w), dtype=torch.bool) |
|
else: |
|
prediction['prediction_masks'] = torch.stack(prediction['prediction_masks'], dim=0)[:, 0] |
|
|
|
process_and_save_output( |
|
"./work_dirs/{}/".format(args.output_name), |
|
data_batch['image_file'], |
|
prediction['prediction'], |
|
prediction['prediction_masks'] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"Done eval of dataset {i_dataset}.") |
|
|
|
def get_seg_hidden_states(hidden_states, output_ids, seg_id): |
|
seg_mask = output_ids == seg_id |
|
n_out = len(seg_mask) |
|
return hidden_states[-n_out:][seg_mask] |
|
|
|
def process_and_save_output(output_dir, image_name, text_output, pred_masks): |
|
if not os.path.exists(output_dir): |
|
os.mkdir(output_dir) |
|
|
|
text_output = text_output.replace("<s>", "").replace("\n", "").replace(" ", " ") |
|
text_output = text_output.split("ASSISTANT: ")[-1] |
|
|
|
cleaned_str = re.sub(r'<.*?>', '', text_output) |
|
|
|
pattern = re.compile(r'<p>(.*?)<\/p>') |
|
phrases = pattern.findall(text_output) |
|
phrases = [p.strip() for p in phrases] |
|
|
|
|
|
cleaned_str = cleaned_str.replace('[SEG]', '') |
|
|
|
|
|
cleaned_str = ' '.join(cleaned_str.split()).strip("'") |
|
cleaned_str = cleaned_str.strip() |
|
|
|
|
|
pred_masks_tensor = pred_masks.cpu() |
|
uncompressed_mask_rles = mask_to_rle_pytorch(pred_masks_tensor) |
|
rle_masks = [] |
|
for m in uncompressed_mask_rles: |
|
rle_masks.append(coco_encode_rle(m)) |
|
|
|
|
|
|
|
result_dict = { |
|
"image_id": image_name[:-4], |
|
"caption": cleaned_str, |
|
"phrases": phrases, |
|
"pred_masks": rle_masks |
|
} |
|
|
|
|
|
|
|
|
|
output_path = f"{output_dir}/{image_name[:-4]}.json" |
|
|
|
with open(output_path, 'w') as f: |
|
json.dump(result_dict, f) |
|
|
|
return |
|
|
|
def mask_to_rle_pytorch(tensor: torch.Tensor): |
|
""" |
|
Encodes masks to an uncompressed RLE, in the format expected by |
|
pycoco tools. |
|
""" |
|
|
|
b, h, w = tensor.shape |
|
tensor = tensor.permute(0, 2, 1).flatten(1) |
|
|
|
|
|
diff = tensor[:, 1:] ^ tensor[:, :-1] |
|
change_indices = diff.nonzero() |
|
|
|
|
|
out = [] |
|
for i in range(b): |
|
cur_idxs = change_indices[change_indices[:, 0] == i, 1] |
|
cur_idxs = torch.cat( |
|
[torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), cur_idxs + 1, |
|
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), ] |
|
) |
|
btw_idxs = cur_idxs[1:] - cur_idxs[:-1] |
|
counts = [] if tensor[i, 0] == 0 else [0] |
|
counts.extend(btw_idxs.detach().cpu().tolist()) |
|
out.append({"size": [h, w], "counts": counts}) |
|
|
|
return out |
|
|
|
def coco_encode_rle(uncompressed_rle): |
|
h, w = uncompressed_rle["size"] |
|
rle = mask_utils.frPyObjects(uncompressed_rle, h, w) |
|
rle["counts"] = rle["counts"].decode("utf-8") |
|
|
|
return rle |
|
|
|
if __name__ == '__main__': |
|
|
|
main() |
|
|