|
from typing import Literal |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmdet.models import CrossEntropyLoss |
|
|
|
from xtuner.registry import BUILDER |
|
from xtuner.model.utils import get_peft_model_state_dict |
|
|
|
from projects.lisa.datasets.utils import DEFAULT_IMAGE_TOKEN |
|
from projects.lisa.models.lisa import LisaModel |
|
|
|
from xtuner.utils import PROMPT_TEMPLATE |
|
from xtuner.tools.utils import get_stop_criteria |
|
from transformers import GenerationConfig |
|
from projects.llava_sam2.models.preprocess.image_resize import DirectResize |
|
|
|
import numpy as np |
|
|
|
from .utils import dynamic_preprocess |
|
|
|
import torchvision.transforms as T |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
from pycocotools import mask as _mask |
|
|
|
from types import MethodType |
|
|
|
from xtuner.model.utils import guess_load_checkpoint |
|
|
|
from mmcv.ops import point_sample |
|
from mmdet.models.utils import get_uncertain_point_coords_with_randomness |
|
|
|
class VideoLLaVASAMBaselineModel(LisaModel): |
|
def __init__(self, |
|
mllm, |
|
tokenizer, |
|
grounding_encoder, |
|
loss_mask=None, |
|
loss_dice=None, |
|
torch_dtype=torch.bfloat16, |
|
pretrained_pth=None, |
|
frozen_sam2_decoder=True, |
|
special_tokens=None, |
|
loss_sample_points=False, |
|
num_points=12544, |
|
|
|
fast_pool=False, |
|
fast_pool_size=4, |
|
use_fast_supervision=False, |
|
|
|
phi3=True, |
|
template=None, |
|
|
|
arch_type:Literal['intern_vl', 'qwen', 'llava']='intern_vl', |
|
|
|
split_model=False, |
|
): |
|
super(LisaModel, self).__init__() |
|
self.split_model = split_model |
|
if split_model: |
|
mllm.model_split = split_model |
|
self.special_tokens = special_tokens |
|
self.mllm = BUILDER.build(mllm) |
|
self.mllm.get_model().initialize_vision_modules(self.mllm.get_model().config) |
|
vision_tower = self.mllm.get_model().get_vision_tower() |
|
vision_tower.to(dtype=torch_dtype) |
|
|
|
self.arch_type = arch_type |
|
|
|
self.fast_pool = fast_pool |
|
self.fast_pool_size = fast_pool_size |
|
|
|
self.tokenizer = BUILDER.build(tokenizer) |
|
self.mllm.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0] |
|
self.grounding_encoder = BUILDER.build(grounding_encoder) |
|
self.grounding_encoder.requires_grad_(False) |
|
if not frozen_sam2_decoder: |
|
self.grounding_encoder.sam2_model.sam_mask_decoder.requires_grad_(True) |
|
|
|
self.loss_mask = BUILDER.build(loss_mask) |
|
self.loss_dice = BUILDER.build(loss_dice) |
|
if use_fast_supervision: |
|
self.loss_exists = BUILDER.build(dict( |
|
type=CrossEntropyLoss, |
|
use_sigmoid=True, |
|
reduction='mean', |
|
loss_weight=1.0) |
|
) |
|
|
|
self.torch_dtype = torch_dtype |
|
|
|
if pretrained_pth is not None: |
|
pretrained_state_dict = guess_load_checkpoint(pretrained_pth) |
|
self.load_state_dict(pretrained_state_dict, strict=False) |
|
print(f'Load pretrained weight from {pretrained_pth}') |
|
|
|
self.loss_sample_points = loss_sample_points |
|
self.num_points = num_points |
|
self.oversample_ratio = 3.0 |
|
self.importance_sample_ratio = 0.75 |
|
self.use_fast_supervision = use_fast_supervision |
|
self.phi3 = phi3 |
|
self.template = template |
|
|
|
|
|
def activation_checkpointing_disable(self): |
|
self.mllm.gradient_checkpointing_disable() |
|
|
|
|
|
def _add_special_tokens(self): |
|
special_tokens = self.special_tokens |
|
_num_new_tokens = self.tokenizer.add_tokens(special_tokens, special_tokens=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.seg_token_idx = self.tokenizer("[SEG]", add_special_tokens=False).input_ids[0] |
|
|
|
def state_dict(self, *args, **kwargs): |
|
state_dict = super(LisaModel, self).state_dict(*args, **kwargs) |
|
from collections import OrderedDict |
|
|
|
to_return = OrderedDict() |
|
|
|
if self.mllm.use_visual_encoder_lora: |
|
to_return.update( |
|
get_peft_model_state_dict( |
|
self.mllm.model.vision_model, state_dict=state_dict)) |
|
raise NotImplementedError |
|
elif not self.mllm.freeze_visual_encoder: |
|
to_return.update({ |
|
k: v |
|
for k, v in state_dict.items() if 'visual_encoder.' in k |
|
}) |
|
raise NotImplementedError |
|
|
|
if self.mllm.use_llm_lora: |
|
if self.arch_type == 'intern_vl': |
|
to_return.update( |
|
get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict) |
|
) |
|
elif self.arch_type == 'qwen': |
|
to_return.update( |
|
get_peft_model_state_dict(self.mllm.model.model, state_dict=state_dict) |
|
) |
|
elif self.arch_type == 'llava': |
|
to_return.update( |
|
get_peft_model_state_dict(self.mllm.model.language_model, state_dict=state_dict) |
|
) |
|
elif not self.mllm.freeze_llm: |
|
to_return.update( |
|
{k: v |
|
for k, v in state_dict.items() if 'llm.' in k}) |
|
raise NotImplementedError |
|
|
|
to_return.update( |
|
{k: v |
|
for k, v in state_dict.items() if 'mlp1.' in k}) |
|
to_return.update( |
|
{k: v |
|
for k, v in state_dict.items() if 'model.multi_modal_projector.' in k}) |
|
|
|
|
|
to_return.update( |
|
{k: v |
|
for k, v in state_dict.items() if 'mask_decoder' in k}) |
|
|
|
|
|
to_return.update( |
|
{k: v |
|
for k, v in state_dict.items() if 'text_hidden_fcs.' in k}) |
|
to_return.update( |
|
{k: v |
|
for k, v in state_dict.items() if 'text_exist_fcs.' in k} |
|
) |
|
to_return.update( |
|
{k: v |
|
for k, v in state_dict.items() if 'lm_head.weight' in k or 'output' in k and 'sam2_model' not in k}) |
|
to_return.update( |
|
{k: v |
|
for k, v in state_dict.items() if 'embed_tokens.weight' in k or 'tok_embeddings' in k}) |
|
return to_return |
|
|
|
def check_obj_number(self, pred_embeddings_list_video, gt_masks_video, fix_number=5): |
|
assert len(pred_embeddings_list_video) == len(gt_masks_video) |
|
ret_pred_embeddings_list_video = [] |
|
ret_gt_masks_video = [] |
|
for pred_mebeds, gt_masks in zip(pred_embeddings_list_video, gt_masks_video): |
|
|
|
if len(pred_mebeds) != len(gt_masks): |
|
min_num = min(len(pred_mebeds), len(gt_masks)) |
|
pred_mebeds = pred_mebeds[:min_num] |
|
gt_masks = gt_masks[:min_num] |
|
if len(pred_mebeds) != fix_number: |
|
if len(pred_mebeds) > fix_number: |
|
_idxs = torch.randperm(pred_mebeds.shape[0]) |
|
_idxs = _idxs[:fix_number] |
|
pred_mebeds = pred_mebeds[_idxs] |
|
gt_masks = gt_masks[_idxs] |
|
else: |
|
n_repeat = fix_number // len(pred_mebeds) + 1 |
|
pred_mebeds = torch.cat([pred_mebeds] * n_repeat, dim=0)[:fix_number] |
|
gt_masks = torch.cat([gt_masks] * n_repeat, dim=0)[:fix_number] |
|
ret_pred_embeddings_list_video.append(pred_mebeds) |
|
ret_gt_masks_video.append(gt_masks) |
|
return ret_pred_embeddings_list_video, ret_gt_masks_video |
|
|
|
def forward(self, data, data_samples=None, mode='loss'): |
|
g_pixel_values = data.pop('g_pixel_values', None) |
|
gt_masks = data.pop('masks', None) |
|
frames_per_batch = data.pop('frames_per_batch', None) |
|
input_ids = data['input_ids'] |
|
fast_exists = data.pop('fast_exists', None) |
|
|
|
|
|
if self.fast_pool: |
|
output = self.mllm(data, data_samples, mode, fast_token_idx=self.fast_token_idx) |
|
else: |
|
output = self.mllm(data, data_samples, mode) |
|
if gt_masks is None: |
|
return {'llm_loss': output.loss, 'loss_mask': output.loss * 0.0, 'loss_dice': output.loss * 0.0} |
|
|
|
assert frames_per_batch, "Video Lisa require frames_per_batch !!!" |
|
|
|
ori_size_list = [] |
|
for i_bs, mask in enumerate(gt_masks): |
|
mask_shape = mask.shape[-2:] |
|
ori_size_list += [mask_shape] * frames_per_batch[i_bs] |
|
|
|
seg_token_mask = input_ids == self.seg_token_idx |
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = output.hidden_states |
|
hidden_states = self.text_hidden_fcs(hidden_states[-1]) |
|
pred_embeddings = hidden_states[seg_token_mask] |
|
|
|
seg_token_counts = seg_token_mask.int().sum(-1) |
|
pred_embeddings_list_ = torch.split(pred_embeddings, seg_token_counts.tolist(), dim=0) |
|
pred_embeddings_list = [] |
|
for item in pred_embeddings_list_: |
|
if len(item) != 0: |
|
pred_embeddings_list.append(item) |
|
|
|
pred_embeddings_list_video, success = self.genetate_video_pred_embeddings( |
|
pred_embeddings_list, frames_per_batch) |
|
if not success: |
|
return {'llm_loss': output.loss, 'loss_mask': output.loss * 0.0, 'loss_dice': output.loss * 0.0} |
|
|
|
if self.use_fast_supervision and fast_exists is not None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
fast_flag = input_ids == self.fast_token_idx |
|
fast_tokens = output.hidden_states[-1][fast_flag] |
|
exists_logit = self.text_exist_fcs(fast_tokens[self.fast_pool_size ** 2 - 1::self.fast_pool_size ** 2]) |
|
gt_exists = torch.cat(fast_exists) |
|
loss_exists = self.loss_exists(exists_logit, gt_exists) |
|
else: |
|
loss_exists = None |
|
|
|
gt_masks_video = self.process_video_gt_masks(gt_masks, frames_per_batch) |
|
pred_embeddings_list_video, gt_masks_video = self.check_obj_number( |
|
pred_embeddings_list_video, gt_masks_video |
|
) |
|
g_pixel_values = torch.stack([ |
|
self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values |
|
]) |
|
num_objs = pred_embeddings_list_video[0].shape[0] |
|
num_frames = len(pred_embeddings_list_video) |
|
language_embeddings = torch.cat(pred_embeddings_list_video, dim=0)[:, None] |
|
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values, expand_size=num_objs) |
|
pred_masks = self.grounding_encoder.inject_language_embd(sam_states, language_embeddings, nf_nobj=(num_frames, num_objs)) |
|
|
|
bs = len(pred_masks) |
|
loss_mask, loss_dice = 0, 0 |
|
accuracy = 0 |
|
for i in range(bs): |
|
pred_mask = pred_masks[i] |
|
gt_mask = gt_masks_video[i] |
|
pred_mask = F.interpolate(pred_mask.unsqueeze(0), size=ori_size_list[i], mode='bilinear').squeeze(0) |
|
|
|
if len(pred_mask) != len(gt_mask): |
|
print('Warning !!! Pred and GT not equal !!!') |
|
_zero = pred_mask.sum() * 0.0 |
|
loss_mask += _zero |
|
loss_dice += _zero |
|
accuracy += _zero |
|
else: |
|
if self.loss_sample_points: |
|
sampled_pred_mask, sampled_gt_mask = self.sample_points(pred_mask, gt_mask) |
|
sam_loss_dice = self.loss_dice( |
|
sampled_pred_mask, |
|
sampled_gt_mask, avg_factor=(len(gt_mask) + 1e-4)) |
|
sam_loss_mask = self.loss_mask( |
|
sampled_pred_mask.reshape(-1), |
|
sampled_gt_mask.reshape(-1), |
|
avg_factor=(pred_mask.shape[0] * sampled_pred_mask.shape[1] + 1e-4)) |
|
else: |
|
sam_loss_mask = self.loss_mask(pred_mask, gt_mask) |
|
sam_loss_dice = self.loss_dice(pred_mask, gt_mask) |
|
accuracy += torch.eq((pred_mask.sigmoid() > 0.5), gt_mask).to(pred_mask).mean() |
|
loss_mask += sam_loss_mask |
|
loss_dice += sam_loss_dice |
|
|
|
loss_dict = { |
|
'loss_mask': loss_mask / (bs + 1e-4), |
|
'loss_dice': loss_dice / (bs + 1e-4), |
|
'llm_loss': output.loss, |
|
} |
|
if loss_exists is not None: |
|
loss_dict['loss_exists'] = loss_exists |
|
return loss_dict |
|
|
|
def sample_points(self, mask_pred, gt_masks): |
|
gt_masks = gt_masks.unsqueeze(1) |
|
gt_masks = gt_masks.to(mask_pred) |
|
mask_pred = mask_pred.unsqueeze(1) |
|
|
|
|
|
with torch.no_grad(): |
|
points_coords = get_uncertain_point_coords_with_randomness( |
|
mask_pred.to(torch.float32), None, self.num_points, |
|
self.oversample_ratio, self.importance_sample_ratio) |
|
|
|
mask_point_targets = point_sample( |
|
gt_masks.float(), points_coords).squeeze(1) |
|
|
|
mask_point_preds = point_sample( |
|
mask_pred.to(torch.float32), points_coords.to(torch.float32)).squeeze(1) |
|
return mask_point_preds.to(mask_pred.dtype), mask_point_targets.to(mask_pred.dtype) |
|
|
|
def genetate_video_pred_embeddings(self, pred_embeddings_list, frames_per_batch): |
|
if len(pred_embeddings_list) == len(frames_per_batch): |
|
success = True |
|
else: |
|
success = False |
|
print("len(pred_embeddings_list):{} is not equal to len(frames_per_batch):{} !!!".format(len(pred_embeddings_list), len(frames_per_batch))) |
|
pred_embeddings_list_video = [] |
|
for pred_embedding_batch, frame_nums in zip(pred_embeddings_list, frames_per_batch): |
|
pred_embeddings_list_video += [pred_embedding_batch] * frame_nums |
|
return pred_embeddings_list_video, success |
|
|
|
def process_video_gt_masks(self, gt_masks, frames_per_batch): |
|
gt_masks_video = [] |
|
|
|
assert len(gt_masks) == len(frames_per_batch) |
|
for gt_masks_batch, frames_num in zip(gt_masks, frames_per_batch): |
|
N, H, W = gt_masks_batch.shape |
|
assert N % frames_num == 0 |
|
gt_masks_batch = gt_masks_batch.reshape( |
|
N // frames_num, frames_num, H, W) |
|
for i in range(frames_num): |
|
gt_masks_video.append(gt_masks_batch[:, i]) |
|
return gt_masks_video |
|
|
|
def preparing_for_generation(self, metainfo, **kwargs): |
|
|
|
assert hasattr(self, 'tokenizer'), "The Model does not have the tokenizer!!!" |
|
self.bot_name = 'BOT' |
|
if 'template' in metainfo.keys(): |
|
template = metainfo['template'] |
|
else: |
|
template = PROMPT_TEMPLATE['phi3_chat'] |
|
if self.template is None: |
|
self.template = template |
|
stop_words = [] |
|
stop_words += self.template.get('STOP_WORDS', []) |
|
stop_criteria = get_stop_criteria( |
|
tokenizer=self.tokenizer, stop_words=stop_words) |
|
self.stop_criteria = stop_criteria |
|
|
|
default_generation_kwargs = dict( |
|
max_new_tokens=512, |
|
do_sample=False, |
|
eos_token_id=self.tokenizer.eos_token_id, |
|
pad_token_id=( |
|
self.tokenizer.pad_token_id |
|
if self.tokenizer.pad_token_id is not None |
|
else self.tokenizer.eos_token_id |
|
), |
|
) |
|
default_generation_kwargs.update(metainfo.get('generation_kwargs', {})) |
|
self.gen_config = GenerationConfig(**default_generation_kwargs) |
|
self.init_prediction_config = True |
|
|
|
self.mllm.to(self.torch_dtype) |
|
|
|
|
|
|
|
|
|
|
|
self.extra_image_processor = DirectResize(target_length=1024, ) |
|
|
|
self.min_dynamic_patch = 1 |
|
if 'max_dynamic_patch' in metainfo.keys(): |
|
self.max_dynamic_patch = metainfo['max_dynamic_patch'] |
|
else: |
|
self.max_dynamic_patch = 12 |
|
self.downsample_ratio = 0.5 |
|
self.image_size = 448 |
|
self.use_thumbnail = True |
|
patch_size = 14 |
|
self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2)) |
|
self.IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
self.IMAGENET_STD = (0.229, 0.224, 0.225) |
|
self.IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>' |
|
self.IMG_START_TOKEN = '<img>' |
|
self.IMG_END_TOKEN = '</img>' |
|
|
|
self.transformer = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) |
|
]) |
|
|
|
def predict_video(self, pixel_values, text_prompts, **kwargs): |
|
ori_h, ori_w = kwargs['ori_height'], kwargs['ori_width'] |
|
|
|
_input_ids = kwargs['input_ids'] |
|
|
|
g_pixel_values = kwargs.pop('g_pixel_values', None) |
|
g_pixel_values = torch.stack([ |
|
self.grounding_encoder.preprocess_image(pixel) for pixel in g_pixel_values |
|
]) |
|
|
|
fast_pixel_values = kwargs.pop('fast_pixel_values', None) |
|
if fast_pixel_values is None: |
|
fast_token_idx = None |
|
else: |
|
fast_token_idx = self.fast_token_idx |
|
|
|
predictions = [] |
|
pred_masks = [] |
|
is_exists_list = [] |
|
for input_ids in _input_ids: |
|
input_ids = torch.tensor(input_ids).unsqueeze(0) |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
pixel_values = pixel_values.to(dtype=self.torch_dtype) |
|
if fast_pixel_values is not None: |
|
fast_pixel_values = fast_pixel_values.to(dtype=self.torch_dtype) |
|
mm_inputs = { |
|
'pixel_values': pixel_values, |
|
'input_ids': input_ids, |
|
'attention_mask': attention_mask, |
|
'position_ids': None, |
|
'past_key_values': None, |
|
'labels': None, |
|
'fast_pixel_values': fast_pixel_values, |
|
'fast_token_idx': fast_token_idx, |
|
} |
|
generate_output = self.mllm.evaluate( |
|
images_clip=pixel_values, |
|
images=g_pixel_values, |
|
input_ids=input_ids, |
|
resize_list=[], |
|
original_size_list=[], |
|
max_new_tokens=512, |
|
) |
|
|
|
generate_output = self.mllm.generate( |
|
**mm_inputs, |
|
generation_config=self.gen_config, |
|
streamer=None, |
|
bos_token_id=self.tokenizer.bos_token_id, |
|
stopping_criteria=self.stop_criteria, |
|
output_hidden_states=True, |
|
return_dict_in_generate=True |
|
) |
|
|
|
predict = self.tokenizer.decode(generate_output.sequences[0], skip_special_tokens=False).strip() |
|
|
|
|
|
|
|
|
|
predictions.append(predict) |
|
|
|
hidden_states = generate_output.hidden_states |
|
last_hidden_states = [item[-1][0] for item in hidden_states] |
|
last_hidden_states = torch.cat(last_hidden_states, dim=0) |
|
seg_hidden_states = get_seg_hidden_states( |
|
last_hidden_states, generate_output.sequences[0][:-1], |
|
seg_id=self.seg_token_idx |
|
) |
|
|
|
if len(seg_hidden_states) == 0: |
|
print("Warning, no [SEG] tokens !!!") |
|
pred_masks.append(torch.zeros((g_pixel_values.shape[0], ori_h, ori_w), dtype=torch.int)) |
|
continue |
|
elif len(seg_hidden_states) > 1: |
|
print("Warning, {} [SEG] tokens !!!".format(len(seg_hidden_states))) |
|
seg_hidden_states = seg_hidden_states[:1] |
|
seg_hidden_states = self.text_hidden_fcs(seg_hidden_states) |
|
|
|
seg_hidden_states = seg_hidden_states.to(dtype=torch.float32) |
|
|
|
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values) |
|
|
|
if len(pixel_values) < 5: |
|
pred_mask = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * pixel_values.shape[0]) |
|
else: |
|
pred_mask = self.grounding_encoder.language_embd_inference(sam_states, [seg_hidden_states] * 5) |
|
pred_mask = F.interpolate( |
|
pred_mask, |
|
size=(ori_h, ori_w), |
|
mode='bilinear', |
|
align_corners=False, |
|
) |
|
pred_mask = pred_mask[:, 0] |
|
pred_mask = pred_mask.sigmoid() > 0.5 |
|
pred_mask = pred_mask.int() |
|
|
|
if self.use_fast_supervision and (input_ids == self.fast_token_idx).sum() > 0: |
|
fast_flag = input_ids.squeeze(0) == self.fast_token_idx |
|
len_out = generate_output.sequences[0][:-1].shape[0] |
|
fast_tokens = last_hidden_states[:-len_out][fast_flag].to(dtype=torch.float32) |
|
exists_logit = self.text_exist_fcs(fast_tokens[self.fast_pool_size ** 2 - 1::self.fast_pool_size ** 2]) |
|
is_exists = exists_logit.squeeze(-1).sigmoid() > 0.5 |
|
is_exists_list.append(is_exists) |
|
not_exists = torch.logical_not(is_exists) |
|
if torch.any(not_exists): |
|
pred_mask[not_exists] = pred_mask[not_exists] * 0 |
|
|
|
pred_masks.append(pred_mask) |
|
assert len(pred_masks) == len(text_prompts) |
|
ret_dict = { |
|
'prediction': predictions, |
|
'prediction_masks': [mask_to_rle(_item.cpu().numpy()) for _item in pred_masks], |
|
} |
|
if 'id' in kwargs.keys(): |
|
ret_dict['id'] = kwargs['id'] |
|
|
|
if len(is_exists_list) > 0: |
|
ret_dict['is_exists'] = is_exists_list |
|
return ret_dict |
|
|
|
def predict_forward( |
|
self, |
|
pixel_values, |
|
text_prompts, |
|
ori_image_size=None, |
|
ori_image=None, |
|
mode='eval', |
|
**kwargs |
|
): |
|
assert self.init_prediction_config, "Please set prediction configs using self.preparing_for_generation()" |
|
|
|
if kwargs.get('type', 'image') == 'video': |
|
return self.predict_video(pixel_values, text_prompts, **kwargs) |
|
if mode == 'demo_video': |
|
return self.predict_demo_video( |
|
pixel_values, text_prompts, ori_image_size, ori_image, **kwargs) |
|
|
|
input_dict = {} |
|
|
|
|
|
assert ori_image is not None, "InternVL2 only support process the image from scratch !!!" |
|
image = ori_image |
|
|
|
if ori_image_size is not None and 'masks' in kwargs.keys(): |
|
g_image = np.array(image) |
|
g_image = self.extra_image_processor.apply_image(g_image) |
|
g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous() |
|
input_dict['g_pixel_values'] = g_pixel_values |
|
|
|
images = dynamic_preprocess(image, self.min_dynamic_patch, |
|
self.max_dynamic_patch, |
|
self.image_size, self.use_thumbnail) |
|
pixel_values = [self.transformer(image) for image in images] |
|
pixel_values = torch.stack(pixel_values).to(self.torch_dtype) |
|
input_dict['pixel_values'] = pixel_values |
|
|
|
num_image_tokens = pixel_values.shape[0] * self.patch_token |
|
image_token_str = f'{self.IMG_START_TOKEN}' \ |
|
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ |
|
f'{self.IMG_END_TOKEN}' |
|
|
|
|
|
ret_predictions = [] |
|
ret_masks = [] |
|
|
|
if isinstance(text_prompts, str): |
|
text_prompts = [text_prompts] |
|
for text_prompt in text_prompts: |
|
|
|
text_prompt = text_prompt.replace(DEFAULT_IMAGE_TOKEN, image_token_str) |
|
input_text = '' |
|
input_text += self.template['INSTRUCTION'].format( |
|
input=text_prompt, round=1, bot_name=self.bot_name) |
|
|
|
ids = self.tokenizer.encode(input_text) |
|
ids = torch.tensor(ids).cuda().unsqueeze(0) |
|
|
|
attention_mask = torch.ones_like(ids, dtype=torch.bool) |
|
|
|
mm_inputs = { |
|
'pixel_values': input_dict['pixel_values'], |
|
'input_ids': ids, |
|
'attention_mask': attention_mask, |
|
'position_ids': None, |
|
'past_key_values': None, |
|
'labels': None |
|
} |
|
|
|
generate_output = self.mllm.generate( |
|
**mm_inputs, |
|
generation_config=self.gen_config, |
|
streamer=None, |
|
bos_token_id=self.tokenizer.bos_token_id, |
|
stopping_criteria=self.stop_criteria, |
|
output_hidden_states=True, |
|
return_dict_in_generate=True |
|
) |
|
predict = self.tokenizer.decode( |
|
generate_output.sequences[0], skip_special_tokens=False).strip() |
|
|
|
ret_predictions.append(predict) |
|
|
|
if ori_image_size is not None and 'masks' in kwargs.keys(): |
|
hidden_states = generate_output.hidden_states |
|
last_hidden_states = [item[-1][0] for item in hidden_states] |
|
last_hidden_states = torch.cat(last_hidden_states, dim=0) |
|
seg_hidden_states = get_seg_hidden_states( |
|
last_hidden_states, generate_output.sequences[0][:-1], |
|
seg_id=self.seg_token_idx |
|
) |
|
|
|
if mode == 'demo': |
|
all_seg_hidden_states = self.text_hidden_fcs(seg_hidden_states) |
|
for seg_hidden_states in all_seg_hidden_states: |
|
seg_hidden_states = seg_hidden_states.unsqueeze(0) |
|
g_pixel_values = torch.stack([ |
|
self.grounding_encoder.preprocess_image(pixel, dtype=self.torch_dtype) for pixel in |
|
[input_dict['g_pixel_values']] |
|
]) |
|
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values) |
|
pred_masks = self.grounding_encoder.inject_language_embd(sam_states, [seg_hidden_states]) |
|
w, h = ori_image_size |
|
masks = F.interpolate(pred_masks, size=(h, w), |
|
mode='bilinear', align_corners=False) |
|
masks = masks[:, 0] |
|
masks = masks.sigmoid() > 0.5 |
|
masks = masks.int() |
|
ret_masks.append(masks) |
|
print('Done gcg demos') |
|
continue |
|
|
|
if len(seg_hidden_states) == 0: |
|
print("Warning, no [SEG] tokens !!!") |
|
ret_masks.append(None) |
|
continue |
|
elif len(seg_hidden_states) > 1: |
|
print("Warning, {} [SEG] tokens !!!".format(len(seg_hidden_states))) |
|
seg_hidden_states = seg_hidden_states[:1] |
|
seg_hidden_states = self.text_hidden_fcs(seg_hidden_states) |
|
|
|
g_pixel_values = torch.stack([ |
|
self.grounding_encoder.preprocess_image(pixel, dtype=self.torch_dtype) for pixel in [input_dict['g_pixel_values']] |
|
]) |
|
sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values) |
|
pred_masks = self.grounding_encoder.inject_language_embd(sam_states, [seg_hidden_states]) |
|
w, h = ori_image_size |
|
masks = F.interpolate(pred_masks, size=(h, w), |
|
mode='bilinear', align_corners=False) |
|
masks = masks[:, 0] |
|
masks = masks.sigmoid() > 0.5 |
|
masks = masks.int() |
|
ret_masks.append(masks) |
|
|
|
if len(ret_predictions) == 1: |
|
ret_predictions = ret_predictions[0] |
|
if len(ret_masks) == 0: |
|
return {'prediction': ret_predictions} |
|
|
|
_ret_masks = [] |
|
for i, ret_mask in enumerate(ret_masks): |
|
if ret_mask is None: |
|
_ret_masks.append(None) |
|
else: |
|
ret_mask = ret_mask.cpu().numpy() |
|
_ret_masks.append(mask_to_rle(ret_mask)) |
|
|
|
if mode == 'demo': |
|
return { |
|
'prediction': ret_predictions, 'prediction_masks': ret_masks, |
|
} |
|
|
|
if 'masks' not in kwargs.keys(): |
|
gt_masks = None |
|
else: |
|
gt_masks = mask_to_rle(kwargs['masks'].cpu().numpy()) |
|
return { |
|
'prediction': ret_predictions, 'prediction_masks': _ret_masks, |
|
'gt_masks': gt_masks, |
|
} |
|
|
|
def predict_demo_video( |
|
self, |
|
pixel_values, |
|
text_prompts, |
|
ori_image_size=None, |
|
ori_image=None, |
|
**kwargs |
|
): |
|
input_dict = {} |
|
|
|
|
|
assert ori_image is not None, "InternVL2 only support process the image from scratch !!!" |
|
assert isinstance(ori_image, list) |
|
all_image_token_str = '' |
|
all_pixel_values = [] |
|
for idx_img, image in enumerate(ori_image): |
|
images = dynamic_preprocess(image, self.min_dynamic_patch, |
|
1, |
|
self.image_size, self.use_thumbnail) |
|
pixel_values = [self.transformer(image) for image in images] |
|
all_pixel_values += pixel_values |
|
|
|
num_image_tokens = len(pixel_values) * self.patch_token |
|
image_token_str = f'{self.IMG_START_TOKEN}' \ |
|
f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ |
|
f'{self.IMG_END_TOKEN}' |
|
image_token_str = f"Frame-{idx_img + 1}: " + image_token_str + '\n' |
|
all_image_token_str += image_token_str |
|
|
|
all_pixel_values = torch.stack(all_pixel_values).to(self.torch_dtype) |
|
input_dict['pixel_values'] = all_pixel_values |
|
|
|
ret_predictions = [] |
|
ret_masks = [] |
|
|
|
if isinstance(text_prompts, str): |
|
text_prompts = [text_prompts] |
|
for text_prompt in text_prompts: |
|
|
|
text_prompt = text_prompt.replace(DEFAULT_IMAGE_TOKEN, all_image_token_str) |
|
input_text = '' |
|
input_text += self.template['INSTRUCTION'].format( |
|
input=text_prompt, round=1, bot_name=self.bot_name) |
|
|
|
ids = self.tokenizer.encode(input_text) |
|
ids = torch.tensor(ids).cuda().unsqueeze(0) |
|
|
|
attention_mask = torch.ones_like(ids, dtype=torch.bool) |
|
|
|
mm_inputs = { |
|
'pixel_values': input_dict['pixel_values'], |
|
'input_ids': ids, |
|
'attention_mask': attention_mask, |
|
'position_ids': None, |
|
'past_key_values': None, |
|
'labels': None |
|
} |
|
|
|
generate_output = self.mllm.generate( |
|
**mm_inputs, |
|
generation_config=self.gen_config, |
|
streamer=None, |
|
bos_token_id=self.tokenizer.bos_token_id, |
|
stopping_criteria=self.stop_criteria, |
|
output_hidden_states=True, |
|
return_dict_in_generate=True |
|
) |
|
predict = self.tokenizer.decode( |
|
generate_output.sequences[0], skip_special_tokens=False).strip() |
|
|
|
ret_predictions.append(predict) |
|
|
|
return { |
|
'prediction': ret_predictions |
|
} |
|
|
|
def get_seg_hidden_states(hidden_states, output_ids, seg_id): |
|
seg_mask = output_ids == seg_id |
|
n_out = len(seg_mask) |
|
return hidden_states[-n_out:][seg_mask] |
|
|
|
def mask_to_rle(mask): |
|
rle = [] |
|
for m in mask: |
|
rle.append(_mask.encode(np.asfortranarray(m.astype(np.uint8)))) |
|
rle[-1]['counts'] = rle[-1]['counts'].decode() |
|
return rle |
|
|