|
import argparse |
|
import copy |
|
import math |
|
import os |
|
import torch |
|
import tqdm |
|
from pycocotools import mask as _mask |
|
import numpy as np |
|
import random |
|
|
|
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig, CLIPImageProcessor, |
|
CLIPVisionModel, GenerationConfig) |
|
|
|
from utils import _init_dist_pytorch, get_dist_info, get_rank, collect_results_cpu |
|
from datasets import RESDataset |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='RefCocoSeg') |
|
parser.add_argument('model_path', help='hf model path.') |
|
parser.add_argument( |
|
'--dataset', |
|
choices=DATASETS_ATTRIBUTES.keys(), |
|
default='refcoco', |
|
help='Specify a ref dataset') |
|
parser.add_argument( |
|
'--split', |
|
default='val', |
|
help='Specify a split') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument('--local_rank', '--local-rank', type=int, default=0) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
return args |
|
|
|
DATASETS_ATTRIBUTES = { |
|
'refcoco': {'splitBy': "unc", 'dataset_name': 'refcoco'}, |
|
'refcoco_plus': {'splitBy': "unc", 'dataset_name': 'refcoco_plus'}, |
|
'refcocog': {'splitBy': "umd", 'dataset_name': 'refcocog'}, |
|
} |
|
|
|
IMAGE_FOLDER = './data/glamm_data/images/coco2014/train2014/' |
|
DATA_PATH = './data/ref_seg/' |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
if args.launcher != 'none': |
|
_init_dist_pytorch('nccl') |
|
rank, world_size = get_dist_info() |
|
torch.cuda.set_device(rank) |
|
else: |
|
rank = 0 |
|
world_size = 1 |
|
|
|
|
|
model = AutoModel.from_pretrained( |
|
args.model_path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=True, |
|
trust_remote_code=True, |
|
).eval().cuda() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.model_path, |
|
trust_remote_code=True, |
|
) |
|
dataset_info = DATASETS_ATTRIBUTES[args.dataset] |
|
|
|
dataset = RESDataset( |
|
image_folder=IMAGE_FOLDER, |
|
dataset_name=dataset_info['dataset_name'], |
|
data_path=DATA_PATH, |
|
split=args.split, |
|
) |
|
|
|
results = [] |
|
n_samples = len(dataset) |
|
per_rank_samples = math.ceil(n_samples / world_size) + 1 |
|
per_rank_ids = range(per_rank_samples * rank, |
|
min(n_samples, per_rank_samples * (rank + 1))) |
|
for idx in tqdm.tqdm(per_rank_ids): |
|
data_batch = dataset[idx] |
|
prediction = {'img_id': data_batch['img_id'], 'gt_masks': data_batch['gt_masks']} |
|
prediction['gt_masks'] = mask_to_rle(prediction['gt_masks'].cpu().numpy()) |
|
del data_batch['img_id'], data_batch['gt_masks'] |
|
|
|
texts = data_batch['text'] |
|
del data_batch['text'] |
|
pred_masks = [] |
|
for text in texts: |
|
_data_batch = copy.deepcopy(data_batch) |
|
_data_batch['text'] = text |
|
pred_mask = model.predict_forward(**_data_batch, tokenizer=tokenizer)['prediction_masks'] |
|
if len(pred_mask) == 0: |
|
|
|
print("No seg pred !!!") |
|
pred_masks.append(None) |
|
else: |
|
_ret_mask = pred_mask[0].cpu().numpy() |
|
_ret_mask = mask_to_rle(_ret_mask) |
|
pred_masks.append(_ret_mask) |
|
|
|
prediction.update({'prediction_masks': pred_masks}) |
|
results.append(prediction) |
|
|
|
tmpdir = './dist_test_temp_res_' + args.dataset + args.split + args.model_path.replace('/', '').replace('.', '') |
|
results = collect_results_cpu(results, len(dataset), tmpdir=tmpdir) |
|
if get_rank() == 0: |
|
metric = dataset.evaluate(results, './work_dirs') |
|
print(metric) |
|
|
|
def mask_to_rle(mask): |
|
rle = [] |
|
for m in mask: |
|
rle.append(_mask.encode(np.asfortranarray(m.astype(np.uint8)))) |
|
rle[-1]['counts'] = rle[-1]['counts'].decode() |
|
return rle |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|