zhouyik's picture
Upload folder using huggingface_hub
032e687 verified
import copy
from collections import OrderedDict
from typing import List, Optional, Tuple, Union
from types import MethodType
import torch
import torch.distributed
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from mmengine.model import BaseModel
from peft import get_peft_model, prepare_model_for_kbit_training
from xtuner.registry import BUILDER
from xtuner.model.modules import dispatch_modules
from transformers import AutoModel, AutoConfig, AutoTokenizer, BitsAndBytesConfig
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutput, BaseModelOutputWithPooling
from .modules import VisualPromptEncodeModel
from .utils import (LoadWoInit, traverse_dict, make_inputs_require_grad, find_all_linear_names,
guess_load_checkpoint, get_peft_model_state_dict)
def vision_model_forward_cache(self,
pixel_values: Optional[torch.FloatTensor] = None,
visual_prompt_embeds: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_embeds: Optional[torch.FloatTensor] = None,
)->Union[Tuple, BaseModelOutputWithPooling]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None and pixel_embeds is None:
raise ValueError('You have to specify pixel_values or pixel_embeds')
if pixel_embeds is not None:
hidden_states = torch.cat([
pixel_embeds[:, :1, :], pixel_embeds[:, 1:, :] + visual_prompt_embeds.flatten(2).transpose(1, 2)], dim=1)
else:
if len(pixel_values.shape) == 4:
_pixel_embeds = self.embeddings(pixel_values)
hidden_states = torch.cat([
_pixel_embeds[:, :1, :], _pixel_embeds[:, 1:, :] + visual_prompt_embeds.flatten(2).transpose(1, 2)], dim=1)
else:
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs.last_hidden_state
pooled_output = last_hidden_state[:, 0, :]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def extract_feature_cache(self,
pixel_values,
visual_prompt_embeds):
if self.select_layer == -1:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
visual_prompt_embeds=visual_prompt_embeds,
output_hidden_states=False,
return_dict=True).last_hidden_state
else:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
visual_prompt_embeds=visual_prompt_embeds,
output_hidden_states=True,
return_dict=True).hidden_states[self.select_layer]
vit_embeds = vit_embeds[:, 1:, :]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
class WrapInternVL(BaseModel):
def __init__(self,
mllm,
tokenizer=None,
freeze_llm=False,
freeze_visual_encoder=False,
freeze_connector=False,
unfreeze_lm_head=False,
llm_lora=None,
visual_encoder_lora=None,
quantization_vit=False,
quantization_llm=False,
pretrained_pth=None,
use_activation_checkpointing=True,
):
super().__init__()
self.freeze_llm = freeze_llm
self.freeze_visual_encoder = freeze_visual_encoder
self.freeze_connector = freeze_connector
self.unfreeze_lm_head = unfreeze_lm_head
self.use_llm_lora = llm_lora is not None
self.use_visual_encoder_lora = visual_encoder_lora is not None
self.quantization_vit = quantization_vit
self.quantization_llm = quantization_llm
self.use_activation_checkpointing=use_activation_checkpointing
if quantization_vit:
assert visual_encoder_lora is not None
if quantization_llm:
assert quantization_llm and llm_lora is not None
config = AutoConfig.from_pretrained(mllm["pretrained_model_name_or_path"], trust_remote_code=True)
if config.llm_config.model_type == 'internlm2':
config.llm_config.attn_implementation = 'flash_attention_2'
else:
config.llm_config._attn_implementation = 'flash_attention_2'
if quantization_vit is False and quantization_llm is False:
quantization = None
else:
llm_int8_skip_modules = ['mlp1']
if quantization_llm and not quantization_vit:
llm_int8_skip_modules.append('vision_model')
if quantization_vit and not quantization_llm:
llm_int8_skip_modules.append('language_model')
quantization_config = dict(
type=BitsAndBytesConfig,
llm_int8_skip_modules=llm_int8_skip_modules,
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')
quantization_clazz = quantization_config.pop('type')
quantization = quantization_clazz(**quantization_config)
with LoadWoInit():
traverse_dict(mllm)
model_clazz = mllm.pop('type')
mllm.update(dict(quantization_config=quantization, config=config))
# The weights in internvl2 modules have been loaded inside the calling of AutoModel.from_pretrained()
self.model = model_clazz(**mllm)
# self.model.language_model.config.use_cache = False
dispatch_modules(self.model.language_model)
self.model.vision_model.forward = MethodType(vision_model_forward_cache, self.model.vision_model)
self.model.extract_feature = MethodType(extract_feature_cache, self.model)
self.visual_prompt_encoder = VisualPromptEncodeModel(
in_channels=3, vision_hidden_size=config.vision_config.hidden_size,
language_hidden_size=config.llm_config.hidden_size, force_image_size=config.force_image_size,
patch_size=config.vision_config.patch_size, downsample_ratio=config.downsample_ratio).to(
self.model.vision_model.dtype)
if tokenizer is not None:
self.tokenizer = self._build_from_cfg_or_module(tokenizer)
else:
self.tokenizer = AutoTokenizer.from_pretrained(mllm["pretrained_model_name_or_path"], trust_remote_code=True)
img_context_token_id = self.tokenizer.convert_tokens_to_ids('<IMG_CONTEXT>')
self.model.img_context_token_id = img_context_token_id
self._add_special_tokens()
if self.freeze_llm:
self.model.language_model.requires_grad_(False)
if self.freeze_visual_encoder:
self.model.vision_model.requires_grad_(False)
if self.freeze_connector:
self.model.mlp1.requires_grad_(False)
if self.unfreeze_lm_head:
# self.model.language_model.get_output_embeddings().require_grad = True
self.model.language_model.get_output_embeddings().requires_grad_(True)
# for name, param in self.named_parameters():
# if 'tok_' in name or 'lm_head' in name:
# print("Unfrozen {} !!!".format(name))
# param.requires_grad_(True)
# if 'output.' in name and 'llm' in name and 'lora' not in name:
# print("Unfrozen {} !!!".format(name))
# param.requires_grad_(True)
if use_activation_checkpointing:
# it is necessary when using gradient checkpointing
if hasattr(self.model.language_model, 'enable_input_require_grads'):
self.model.language_model.enable_input_require_grads()
else:
self.model.language_model.get_input_embeddings(
).register_forward_hook(make_inputs_require_grad)
self.gradient_checkpointing_enable()
if self.use_llm_lora:
self._prepare_llm_for_lora(llm_lora)
if self.use_visual_encoder_lora:
self._prepare_visual_encoder_for_lora(visual_encoder_lora)
if pretrained_pth is not None:
pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
self.load_state_dict(pretrained_state_dict, strict=False) # TODO, check whether the internvl2 weights are loaded correctly.
print(f"Load pretrained weight from {pretrained_pth}")
self._count = 0
print_log(self, logger="current")
print_log('InternVL_V1_5 construction is complete', logger='current')
def _add_special_tokens(self):
assert hasattr(self, "tokenizer")
mark_tokens = [f'<mark{str(ii).zfill(3)}>' for ii in range(100)]
added_tokens_num = self.tokenizer.add_tokens(mark_tokens)
print_log(f'{added_tokens_num} special mark tokens were added successfully.', logger='current')
self.model.language_model.resize_token_embeddings(len(self.tokenizer))
self.mark_token_ids = {mark_token: self.tokenizer(
mark_token, add_special_tokens=False).input_ids[0] for mark_token in mark_tokens}
if self.use_activation_checkpointing or self.use_llm_lora or not self.freeze_llm:
self.model.language_model.enable_input_require_grads()
self.added_special_token = True
return
def _build_from_cfg_or_module(self, cfg_or_mod):
if isinstance(cfg_or_mod, nn.Module):
return cfg_or_mod
elif isinstance(cfg_or_mod, dict):
traverse_dict(cfg_or_mod)
return BUILDER.build(cfg_or_mod)
else:
raise NotImplementedError
def _parse_lora_config(self, lora_config):
if isinstance(lora_config, dict) or isinstance(
lora_config, Config) or isinstance(lora_config, ConfigDict):
lora_config = BUILDER.build(lora_config)
return lora_config
def _prepare_llm_for_lora(self, lora_config, use_activation_checkpointing=True):
lora_config = self._parse_lora_config(lora_config)
self.model.language_model = prepare_model_for_kbit_training(
self.model.language_model, use_activation_checkpointing)
if lora_config.target_modules is None:
modules = find_all_linear_names(self.model.language_model)
lora_config.target_modules = modules
self.model.language_model = get_peft_model(self.model.language_model, lora_config)
def _prepare_visual_encoder_for_lora(self, lora_config):
lora_config = self._parse_lora_config(lora_config)
if lora_config.target_modules is None:
modules = find_all_linear_names(self.model.vision_model)
lora_config.target_modules = modules
self.model.vision_model = get_peft_model(self.model.vision_model, lora_config)
def gradient_checkpointing_enable(self):
self.activation_checkpointing_enable()
def activation_checkpointing_enable(self):
self.model.language_model.gradient_checkpointing_enable()
def gradient_checkpointing_disable(self):
self.activation_checkpointing_disable()
def activation_checkpointing_disable(self):
self.model.language_model.gradient_checkpointing_disable()
def state_dict(self, *args, **kwargs):
state_dict = super().state_dict(*args, **kwargs)
to_return = OrderedDict()
# Step 1. visual_encoder
if self.use_visual_encoder_lora:
to_return.update(
get_peft_model_state_dict(
self.model.vision_model, state_dict=state_dict))
elif not self.freeze_visual_encoder:
to_return.update({
k: v
for k, v in state_dict.items() if 'model.vision_model.' in k
})
# Step 2. LLM
if self.use_llm_lora:
to_return.update(
get_peft_model_state_dict(
self.model.language_model, state_dict=state_dict))
elif not self.freeze_llm:
to_return.update({
k: v
for k, v in state_dict.items() if 'model.language_model.'
})
# Step 3. Projector
to_return.update(
{k: v
for k, v in state_dict.items() if 'model.mlp1.' in k})
# prompt related models
to_return.update(
{k: v
for k, v in state_dict.items() if 'visual_prompt_encoder.' in k})
# embeds and so on
# vocabulary embedding
to_return.update(
{k: v for k, v in state_dict.items() if 'tok_' in k or 'embed_tokens' in k}
)
# logit head
to_return.update(
{k: v for k, v in state_dict.items() if
('output.' in k or 'lm_head' in k) and 'llm' in k and 'lora' not in k}
)
return to_return
def init_weights(self):
pass
def forward(self, data, data_samples=None, mode='loss'):
pixel_values = data['pixel_values'].to(self.model.vision_model.dtype)
visual_prompts = data['visual_prompts'].to(self.model.vision_model.dtype)
merged_visual_prompts = data['merged_visual_prompts'].to(self.model.vision_model.dtype)
num_patches = data['num_patches']
num_vprompts = data['num_vprompts']
sampled_mark_token_ids = data['sampled_mark_token_ids']
# print('pixel values: ', pixel_values.shape)
# print('visual prompts: ', visual_prompts.shape)
# print('merged visual prompt: ', merged_visual_prompts.shape)
# print('num patches: ', num_patches)
# print('num_vprompts: ', num_vprompts)
# exit(0)
sampled_mark_tokens = [f'<mark{str(ii.item()).zfill(3)}>' for ii in sampled_mark_token_ids]
sampled_mark_token_ids = torch.tensor(
[self.mark_token_ids[mark_token] for mark_token in sampled_mark_tokens],
dtype=torch.long).to("cuda")
# print("sampled mark tokens: ", sampled_mark_tokens)
# print("sampled mark token ids: ", sampled_mark_token_ids)
mark_embeddings = self.model.language_model.get_input_embeddings()(sampled_mark_token_ids)
visual_prompts_patch_embeds = self.visual_prompt_encoder(
merged_visual_prompts, visual_prompts, mark_embeddings, num_patches, num_vprompts)
input_ids = data['input_ids']
position_ids = data['position_ids']
attention_mask = data['attention_mask']
image_flags = data['image_flags']
labels = data['labels']
use_cache = False
outputs = self._llm_forward(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
image_flags=image_flags,
pixel_values=pixel_values,
labels=labels,
use_cache=use_cache,
visual_prompt_embeds=visual_prompts_patch_embeds,
)
loss_dict = {'loss': outputs.loss}
if mode == 'loss':
return loss_dict
else:
raise NotImplementedError
def _llm_forward(
self,
pixel_values: torch.FloatTensor,
visual_prompt_embeds: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None \
else self.model.config.use_return_dict
image_flags = image_flags.squeeze(-1)
# We only added the clone code here to avoid the error. Error will be thrown in the below try...except... codes
input_embeds = self.model.language_model.get_input_embeddings()(input_ids).clone()
# input_embeds = self.model.language_model.get_input_embeddings()(input_ids)
vit_embeds = self.model.extract_feature(pixel_values, visual_prompt_embeds)
# vit_embeds = self.model.extract_feature(pixel_values)
vit_embeds = vit_embeds[image_flags == 1]
vit_batch_size = pixel_values.shape[0]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B*N, C)
if torch.distributed.get_rank() == 0 and self._count % 100 == 0:
print(f"dynamic ViT batch size: {vit_batch_size}, "
f"images per sample: {vit_batch_size}/B, "
f"dynamic token length: {N}")
self._count += 1
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.model.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C).to(input_embeds.dtype)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f"warning: {e}, input_embeds[selected].shape="
f"{input_embeds[selected].shape}, "
f"vit_embeds.shape={vit_embeds.shape}")
n_token = selected.sum()
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token].to(input_embeds.dtype)
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.model.language_model(
inputs_embeds = input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shit so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.model.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits, ) + outputs[1:]
return (loss, ) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)