DenseLabelDev / projects /colva /dataset /InternVLDataset.py
zhouyik's picture
Upload folder using huggingface_hub
032e687 verified
import copy
import io
import json
import os
import random
import warnings
import logging
from typing import Any
from copy import deepcopy
from distinctipy import distinctipy
import numpy as np
from PIL import Image, ImageDraw
import cv2
import torch
from torch.utils.data import Dataset
import torchvision.transforms as T
import torch.nn.functional as F
from torchvision.transforms.functional import InterpolationMode
from datasets import Dataset as HFDataset
from datasets import DatasetDict, load_from_disk
from transformers import AutoConfig, AutoTokenizer
from pycocotools import mask
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from xtuner.registry import BUILDER
from xtuner.dataset.huggingface import process_hf_dataset, build_origin_dataset
from xtuner.utils import DEFAULT_IMAGE_TOKEN
from .process_functions import (dynamic_preprocess, preprocess_internlm,
preprocess_mpt, preprocess_phi3, preprocess,
vcr_decode_mask_fn, preprocess_phi3_debug)
from .utils import (expand2square, expand2square_mask, DEFAULT_VISION_PROMPT_TOKEN,
VPT_CONTEXT_TOKEN, VPT_START_TOKEN, VPT_END_TOKEN, RGB_NAME)
from .process_functions import (point_rendering, box_rendering, image_blending, contour_rendering)
class InternVLDataset(Dataset):
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def __init__(self,
model_path,
data_path=None,
image_folder=None,
dataset_map_fn=None,
annotation_load_fn=None,
dynamic_image_size=False,
pad_image_to_square=False,
repeat_time=1,
max_length=8192,
num_dynamic_patch=None,
lazy_load=True,
group_by_length=False,
tokenizer=None,
support_prompt_types=["rectangle"],
pseudo_two_images_mode=False,
ot_image_processor=None,
vfm_name="RADIO",):
super().__init__()
self.max_length = max_length
self.dataset_map_fn = dataset_map_fn
self.annotation_load_fn = annotation_load_fn
self.lazy_load = lazy_load
self.dynamic_image_size = dynamic_image_size
self.pad_image_to_square = pad_image_to_square
self.group_by_length = group_by_length
self.support_prompt_types = support_prompt_types
self.pseudo_two_images_mode = pseudo_two_images_mode
self.ot_image_processor = ot_image_processor
self.vfm_name = vfm_name
if vfm_name in ['DINOv2', 'ConvNext']:
self.ot_image_processor.do_center_crop=False
self.ot_image_processor.do_resize=False
self.cfg = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
self.template = self.cfg.template
if num_dynamic_patch is not None and len(num_dynamic_patch) == 2:
self.min_dynamic_patch = num_dynamic_patch[0]
self.max_dynamic_patch = num_dynamic_patch[1]
else:
self.min_dynamic_patch = self.cfg.min_dynamic_patch
self.max_dynamic_patch = self.cfg.max_dynamic_patch
self.downsample_ratio = self.cfg.downsample_ratio
self.image_size = self.cfg.force_image_size
self.use_thumbnail = self.cfg.use_thumbnail
patch_size = self.cfg.vision_config.patch_size
self.patch_token = int((self.image_size // patch_size)**2 * (self.downsample_ratio**2))
if tokenizer is not None:
self.tokenizer = tokenizer
else:
self.tokenizer = AutoTokenizer.from_pretrained(
model_path, trust_remote_code=True)
self._add_special_tokens()
self.transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')
if img.mode != 'RGB' else img),
T.Resize((self.image_size, self.image_size)),
T.ToTensor(),
T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD)
])
json_data, hf_json_data = self.annotation_load_fn(data_path, repeat_time, image_folder=image_folder)
if json_data is not None:
self.json_data = json_data
hf_json_data = DatasetDict({'train': HFDataset.from_list(hf_json_data)})
if self.lazy_load:
self.text_data = build_origin_dataset(hf_json_data, 'train')
else:
raise NotImplementedError
self.image_folder = image_folder
self._max_refetch = 1000
self.tcs_loader = None
def _add_special_tokens(self):
special_tokens = [VPT_CONTEXT_TOKEN,]
num_new_tokens = self.tokenizer.add_tokens(special_tokens, special_tokens=True)
@property
def modality_length(self):
length_list = []
for data_dict in self.text_data:
if self.lazy_load:
cur_len = 100
else:
cur_len = len(data_dict['input_ids'])
if data_dict.get('image', None) is None:
cur_len = -cur_len
length_list.append(cur_len)
return length_list
def _rand_another(self):
return np.random.randint(0, len(self.text_data))
def __len__(self):
return len(self.text_data)
def __getitem__(self, index) -> Any:
for _ in range(self._max_refetch + 1):
data = self.prepare_data(index)
# Broken images may cause the returned data to be None
if data is None:
index = self._rand_another()
continue
return data
def prepare_data(self, index):
if hasattr(self, 'json_data'):
data_dict = copy.deepcopy(self.json_data[index])
data_dict.update(self.text_data[index])
else:
data_dict = copy.deepcopy(self.text_data[index])
if self.lazy_load:
result = self.dataset_map_fn(data_dict)
if result is None:
return None
data_dict.update(result)
if 'image' in data_dict and data_dict['image'] is not None and len(data_dict['image']) != 0:
if type(data_dict['image']) == list or self.pseudo_two_images_mode:
ret = self.multi_modal_multi_image_get_item(data_dict)
else:
ret = self.multi_modal_get_item(data_dict)
elif 'video' in data_dict and data_dict['video'] is not None and data_dict['video'] != '':
ret = self.video_get_item(data_dict)
else:
ret = self.pure_text_get_item(data_dict)
return ret
else:
raise NotImplementedError
def get_preprocess_function(self):
# Select the appropriate preprocessing function based on the template name
if self.template == "Hermes-2":
preprocess_function = preprocess_mpt
elif self.template == "internlm2-chat" or "internvl2_5":
preprocess_function = preprocess_internlm
self.template = "internlm2-chat"
elif self.template == "phi3-chat":
preprocess_function = preprocess_phi3_debug #preprocess_phi3
else:
preprocess_function = preprocess
return preprocess_function
def load_image(self, image_path):
# Load the image using tcs_loader if available, otherwise use PIL
if self.tcs_loader is not None and 's3://' in image_path:
return self.tcs_loader(image_path)
return Image.open(image_path).convert('RGB')
def decode_mask(self, object_masks, ori_height, ori_width):
binary_masks = []
for object_mask in object_masks:
if isinstance(object_mask, dict):
if isinstance(object_mask["counts"], list):
# convert to compressed RLE
object_mask = mask.frPyObjects(object_mask, ori_height, ori_width)
m = mask.decode(object_mask)
m = m.astype(np.uint8).squeeze()
elif object_mask:
rles = mask.frPyObjects(object_mask, ori_height, ori_width)
rle = mask.merge(rles)
m = mask.decode(rle).astype(np.uint8).squeeze()
else:
m = np.zeros((ori_height, ori_width), dtype=np.uint8)
binary_masks.append(m)
if len(binary_masks) == 0:
binary_masks.append(np.zeros((ori_height, ori_width), dtype=np.uint8))
masks = np.stack(binary_masks, axis=0)
if self.pad_image_to_square:
masks = expand2square_mask(masks)
# masks = torch.from_numpy(masks)
return masks
def multi_modal_get_item(self, data_item):
# Ensure the first conversation contains an image placeholder
if DEFAULT_IMAGE_TOKEN not in data_item['conversations'][0]['value']:
data_item['conversations'][0]['value'] = DEFAULT_IMAGE_TOKEN + '\n' + data_item['conversations'][0]['value']
# Merge the image path
image_path = os.path.join(self.image_folder, data_item['image'])
# Load the image using tcs_loader if available, otherwise use PIL
try:
image = self.load_image(image_path)
except Exception as e:
print(f'Error: {e}', flush=True)
print_log(f'Error: {e}', logger='current')
return None
if image is None:
return None
ori_width, ori_height = image.size
if ori_width < 10 or ori_height < 10:
return None
# image_name = image_path[-10:-4]
# process and get masks/points/bbox
merged_visual_prompts = cv2.imread(image_path)
if merged_visual_prompts is None:
merged_visual_prompts = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
regions = np.zeros(shape=(1, ori_height, ori_width), dtype=np.uint8)
has_visual_prompts = False
if 'annotation' in data_item and data_item['annotation'] is not None and len(data_item['annotation']) > 0:
annotations = data_item['annotation']
sampled_inds = data_item.get('sampled_inds', list(range(len(annotations))))
if self.annotation_load_fn.__name__ == 'RegionShortConversationVCRDataset_load_fn':
bboxes = [annotations[idx]['bbox'] for idx in sampled_inds]
segms = [annotations[idx]['segmentation'] for idx in sampled_inds]
regions = vcr_decode_mask_fn(bboxes, segms, ori_height, ori_width)
regions = (regions > 0.0).astype(np.uint8)
elif self.annotation_load_fn.__name__ == 'MDPVBoxOCRDataset_load_fn':
bboxes = [annotations[idx]['bbox'] for idx in sampled_inds]
regions = np.zeros(shape=(len(bboxes), ori_height, ori_width), dtype=np.uint8)
for bidx, bbox in enumerate(bboxes):
x0, y0, x1, y1 = bbox
regions[bidx, y0:y1, x0:x1] = 1
else:
segms = [annotations[idx]['segmentation'] for idx in sampled_inds]
regions = self.decode_mask(segms, ori_height=ori_height, ori_width=ori_width) # n, h, w
try:
contour_rendering(merged_visual_prompts, regions)
except Exception as e:
pass
has_visual_prompts = True
merged_visual_prompts = Image.fromarray(cv2.cvtColor(merged_visual_prompts, cv2.COLOR_BGR2RGB))
# image.save(f'/mnt/bn/xiangtai-training-data/project/xiangtai-windows/internvl/internvl_debug_out/ori_image_{image_name}.jpg')
# merged_visual_prompts.save(f'/mnt/bn/xiangtai-training-data/project/xiangtai-windows/internvl/internvl_debug_out/merged_vprompts_{image_name}.jpg')
# print(f"{image_name}: ", data_item['conversations'])
# exit(0)
if self.dynamic_image_size: # If dynamic image size is enabled, preprocess the image dynamically
try:
images, _regions, merged_regions = dynamic_preprocess(
image, regions, merged_visual_prompts, min_num=self.min_dynamic_patch, max_num=self.max_dynamic_patch,
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
except AssertionError as e:
return None
elif self.pad_image_to_square:
image = expand2square(
image,
tuple(int(x * 255) for x in self.IMAGENET_MEAN))
images = [image]
merged_visual_prompts = expand2square(
merged_visual_prompts,
tuple(int(x * 255) for x in self.IMAGENET_MEAN))
merged_regions = [merged_visual_prompts]
else:
images = [image]
merged_regions = [merged_visual_prompts]
# Apply the transformation to each image and stack the results into a tensor
pixel_values = [self.transform(image) for image in images]
pixel_values = torch.stack(pixel_values) # num_patch, channels, h, w
merged_visual_prompts = [self.transform(merged_region) for merged_region in merged_regions]
merged_visual_prompts = torch.stack(merged_visual_prompts)
transformed_visual_prompts = []
for region in _regions:
transformed_regions = []
for _region in region:
resized_region = cv2.resize(
_region[:, :, np.newaxis], dsize=(self.image_size, self.image_size),
interpolation=cv2.INTER_NEAREST_EXACT)
transformed_regions.append(torch.from_numpy(resized_region).squeeze(-1))
transformed_visual_prompts.append(torch.stack(transformed_regions))
visual_prompts = torch.stack(transformed_visual_prompts) # num_prompts, num_patch, h, w
assert merged_visual_prompts.shape[:2] == pixel_values.shape[:2]
if self.vfm_name == "DINOv2":
OT_FORCE_IMAGE_SIZE = 512
elif self.vfm_name in ["RADIO", "ConvNext"]:
OT_FORCE_IMAGE_SIZE = 1024
else:
raise NotImplementedError
image = self.load_image(image_path)
w, h = image.size
if w > h:
target_size = (OT_FORCE_IMAGE_SIZE, int(h/w*OT_FORCE_IMAGE_SIZE))
else:
target_size = (int(w/h*OT_FORCE_IMAGE_SIZE), OT_FORCE_IMAGE_SIZE)
resized_image = image.resize(target_size)
cur_w, cur_h = resized_image.size
padded_image = np.zeros(shape=(OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE, 3), dtype=np.uint8) * 255
padded_image[:cur_h, :cur_w, :] = np.array(resized_image)
ot_pixel_values = self.ot_image_processor(images=padded_image, return_tensors='pt').pixel_values
ot_visual_prompts = torch.tensor(regions).\
to(ot_pixel_values.dtype).to(ot_pixel_values.device) # num_prompts, h, w
h, w = ot_visual_prompts.shape[-2:]
if h > w:
target_size = (OT_FORCE_IMAGE_SIZE, int(w/h*OT_FORCE_IMAGE_SIZE))
else:
target_size = (int(h/w*OT_FORCE_IMAGE_SIZE), OT_FORCE_IMAGE_SIZE)
resized_ot_visual_prompts = F.interpolate(ot_visual_prompts.unsqueeze(1), size=target_size, mode="bilinear").squeeze(1)
resized_padded_ot_visual_prompts = resized_ot_visual_prompts.new_zeros((resized_ot_visual_prompts.shape[0], OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE))
resized_padded_ot_visual_prompts[:, :target_size[0], :target_size[1]] = resized_ot_visual_prompts
# Ensure that there is only one patch if dynamic image size is not enabled
num_patches = pixel_values.size(0)
if not self.dynamic_image_size:
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
# Selcet the appropriate preprocessing function based on the template name
preprocess_function = self.get_preprocess_function()
# Preprocess the conversations and generate the return dictionary
if has_visual_prompts:
region_ids = [[region_id+1 for region_id in range(ot_visual_prompts.shape[0])],]
object_tokens_str = ""
for fidx, object_ids_fidx in enumerate(region_ids):
object_tokens_str = object_tokens_str + f"Regions in the image: "
for object_id in object_ids_fidx:
object_tokens_str = object_tokens_str + f"<region-{object_id}>{VPT_CONTEXT_TOKEN}, "
object_tokens_str = object_tokens_str[:-1] + ".\n"
else:
object_tokens_str = ""
ret = preprocess_function(self.template, [deepcopy(data_item['conversations'])],
self.tokenizer, [self.patch_token * num_patches],
group_by_length=self.group_by_length, ds_name="XXX",
num_image=1, object_tokens_str=object_tokens_str)
# Create the final return dictionary
ret = dict(
input_ids=ret['input_ids'][0],
labels=ret['labels'][0],
attention_mask=ret['attention_mask'][0],
pixel_values=merged_visual_prompts, #pixel_values,
merged_visual_prompts=pixel_values, #merged_visual_prompts,
image_flags=torch.tensor([1] * num_patches, dtype=torch.long),
num_patches=[num_patches,],
visual_prompts=visual_prompts.flatten(0, 1),
num_vprompts=[visual_prompts.shape[0],],
vprompt_flags=[[1]*visual_prompts.shape[0], ] if has_visual_prompts else [[0]*visual_prompts.shape[0],],
num_images=1,
ot_pixel_values=ot_pixel_values,
ot_visual_prompts=resized_padded_ot_visual_prompts,
region_ids=[[region_id+1 for region_id in range(visual_prompts.shape[0])],],
)
return ret
def multi_modal_multi_image_get_item(self, data_item):
image_name_list = data_item['image']
image_path_list = [os.path.join(self.image_folder, image_name) for image_name in image_name_list]
images = [self.load_image(image_path) for image_path in image_path_list]
if any([item is None for item in images]):
return None
merged_visual_prompts = [cv2.imread(image_path) for image_path in image_path_list]
for idx, item in enumerate(merged_visual_prompts):
if item is not None:
continue
merged_visual_prompts[idx] = cv2.cvtColor(np.asarray(image_path_list[idx]), cv2.COLOR_RGB2BGR)
# image_name = image_path_list[0][-8:-4]
gt_region_id = -1
visual_prompts_list, object_ids = [], []
if 'pos_annotations' in data_item and data_item['pos_annotations'] is not None and len(data_item['pos_annotations']) > 0:
pos_annotations = data_item['pos_annotations']
neg_annotations = data_item['neg_annotations']
name_rgb = random.choice(RGB_NAME)
color_name, color = [], []
for k, v in name_rgb.items():
color_name.append(str(k))
color.append(v)
color = color[0]
color_name = color_name[0]
color_anno_i = (color[2], color[1], color[0])
for fidx in range(len(pos_annotations)-1):
ori_width, ori_height = images[fidx].size
regions = self.decode_mask(pos_annotations[fidx], ori_height=ori_height, ori_width=ori_width)
visual_prompts_list.append(regions)
object_ids.append([])
for region in regions:
contours, hierarchy = cv2.findContours(region, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(merged_visual_prompts[fidx], contours, -1, color=color_anno_i, thickness=2)
object_ids[fidx].append(1)
ori_width, ori_height = images[-1].size
pos_neg_segms = pos_annotations[-1] + neg_annotations[-1]
regions = self.decode_mask(pos_neg_segms, ori_height=ori_height, ori_width=ori_width)
visual_prompts_list.append(regions)
random_id = list(range(1, len(regions)+1))
random.shuffle(random_id)
try:
contour_rendering(merged_visual_prompts[-1], regions, random_id)
object_ids.append([_id for _id in random_id])
choice_names = [f"{chr(i)}" for i in range(65,91)]
if len(regions) > len(choice_names) - 1:
valid_num = len(choice_names) - 1
else:
valid_num = len(regions)
region_ids = random_id[:valid_num]
choice_names = choice_names[:valid_num+1]
gt_region_id = region_ids[0] if not data_item['is_disappear'] else -1
region_ids.sort()
multi_choices_str = ""
gt_choice_str = ""
for choice_name, region_id in zip(choice_names[:-1], region_ids):
multi_choices_str = multi_choices_str + f"{choice_name}. {region_id}\n"
if region_id == gt_region_id:
assert gt_choice_str == ""
gt_choice_str = gt_choice_str + f"{choice_name}"
multi_choices_str = multi_choices_str + f"{choice_names[-1]}. None of the above choices are correct\n"
if gt_choice_str == "" or data_item['is_disappear'] or len(pos_annotations[-1]) == 0:
gt_choice_str = f"{choice_names[-1]}"
conversations = data_item['conversations']
for i, conversation in enumerate(conversations):
conversation_value = conversation['value']
conversation_value = conversation_value.format(color=color_name, choices=multi_choices_str, answer=gt_choice_str)
conversation['value'] = conversation_value
data_item['conversations'] = conversations
except Exception as e:
pass
else:
pass
merged_visual_prompts = [Image.fromarray(cv2.cvtColor(item, cv2.COLOR_BGR2RGB)) for item in merged_visual_prompts]
# for fidx in range(len(images)):
# images[fidx].save(f'/mnt/bn/zhangtao99-2/internvl/internvl_debug_out/ori_image_{image_name}_f{fidx+1}.jpg')
# merged_visual_prompts[fidx].save(f'/mnt/bn/zhangtao99-2/internvl/internvl_debug_out/merged_vprompts_{image_name}_f{fidx+1}.jpg')
# print(f"{image_name}: ", data_item['conversations'])
# exit(0)
if self.dynamic_image_size: # If dynamic image size is enabled, preprocess the image dynamically
num_patches_list, images_list, merged_regions_list, crop_regions_list, num_vprompts_list = [], [], [], [], []
for image, visual_prompts, merged_visual_prompt in zip(images, visual_prompts_list, merged_visual_prompts):
try:
_images, regions, merged_regions = dynamic_preprocess(
image, visual_prompts, merged_visual_prompt, min_num=self.min_dynamic_patch, max_num=self.max_dynamic_patch,
image_size=self.image_size, use_thumbnail=self.use_thumbnail)
except AssertionError as e:
return None
images_list.extend(_images)
merged_regions_list.extend(merged_regions)
crop_regions_list.extend(regions)
num_patches_list.append(len(_images))
num_vprompts_list.append(len(regions))
else:
raise NotImplementedError
# Apply the transformation to each image and stack the results into a tensor
pixel_values = [self.transform(image) for image in images_list]
pixel_values = torch.stack(pixel_values) # num_patch, channels, h, w
merged_visual_prompts = [self.transform(merged_region) for merged_region in merged_regions_list]
merged_visual_prompts = torch.stack(merged_visual_prompts)
transformed_visual_prompts = []
for region in crop_regions_list:
transformed_regions = []
for _region in region:
resized_region = cv2.resize(
_region[:, :, np.newaxis], dsize=(self.image_size, self.image_size),
interpolation=cv2.INTER_NEAREST_EXACT)
transformed_regions.append(torch.from_numpy(resized_region).squeeze(-1))
transformed_visual_prompts.append(torch.stack(transformed_regions))
visual_prompts = torch.stack(transformed_visual_prompts) # num_prompts, num_patch, h, w
assert merged_visual_prompts.shape[:2] == pixel_values.shape[:2]
if self.vfm_name == "DINOv2":
OT_FORCE_IMAGE_SIZE = 512
elif self.vfm_name in ["RADIO", "ConvNext"]:
OT_FORCE_IMAGE_SIZE = 1024
else:
raise NotImplementedError
ot_pixel_values = []
for fi, image in enumerate(images):
w, h = image.size
if w > h:
target_size = (OT_FORCE_IMAGE_SIZE, int(h/w*OT_FORCE_IMAGE_SIZE))
else:
target_size = (int(w/h*OT_FORCE_IMAGE_SIZE), OT_FORCE_IMAGE_SIZE)
resized_image = image.resize(target_size)
cur_w, cur_h = resized_image.size
padded_image = np.ones(shape=(OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE, 3), dtype=np.uint8) * 255
padded_image[:cur_h, :cur_w, :] = np.array(resized_image)
ot_pixel_values.append(self.ot_image_processor(images=Image.fromarray(padded_image), return_tensors='pt').pixel_values)
# ot_pixel_values = [self.ot_image_processor(images=image, return_tensors='pt').pixel_values for image in images]
ot_pixel_values = torch.cat(ot_pixel_values)
ot_visual_prompts = torch.from_numpy(np.concatenate(visual_prompts_list, axis=0)).\
to(ot_pixel_values.dtype).to(ot_pixel_values.device) # num_prompts, h, w
h, w = ot_visual_prompts.shape[-2:]
if h > w:
target_size = (OT_FORCE_IMAGE_SIZE, int(w/h*OT_FORCE_IMAGE_SIZE))
else:
target_size = (int(h/w*OT_FORCE_IMAGE_SIZE), OT_FORCE_IMAGE_SIZE)
resized_ot_visual_prompts = F.interpolate(ot_visual_prompts.unsqueeze(1), size=target_size, mode="bilinear").squeeze(1)
resized_padded_ot_visual_prompts = resized_ot_visual_prompts.new_zeros((resized_ot_visual_prompts.shape[0], OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE))
resized_padded_ot_visual_prompts[:, :target_size[0], :target_size[1]] = resized_ot_visual_prompts
# Ensure that there is only one patch if dynamic image size is not enabled
num_patches = pixel_values.size(0)
if not self.dynamic_image_size:
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
# Selcet the appropriate preprocessing function based on the template name
preprocess_function = self.get_preprocess_function()
# Preprocess the conversations and generate the return dictionary
if gt_region_id != object_ids[-1][0] and gt_region_id != -1:
print("query object id doesn't match with the candidate ids.")
return None
region_ids = [[gt_region_id for _ in object_ids[fidx]]
for fidx in range(len(num_vprompts_list)-1)] #+ [object_ids[-1],]
object_tokens_str = ""
for fidx, object_ids_fidx in enumerate(region_ids):
object_tokens_str = object_tokens_str + f"Objects in Image-{fidx+1}: "
for object_id in range(1, len(object_ids_fidx)+1):
object_tokens_str = object_tokens_str + f"<query object>{VPT_CONTEXT_TOKEN}, "
object_tokens_str = object_tokens_str[:-2] + ".\n"
sorted_indices = sorted(range(len(object_ids[-1])), key=lambda k: object_ids[-1][k])
sorted_cand_object_ids = []
object_tokens_str = object_tokens_str + f"Objects in Image-{len(object_ids)}: "
for sorted_idx in sorted_indices:
object_id = object_ids[-1][sorted_idx]
object_tokens_str = object_tokens_str + f"<object-{object_id}>{VPT_CONTEXT_TOKEN}, "
sorted_cand_object_ids.append(object_id)
object_tokens_str = object_tokens_str[:-2] + ".\n"
region_ids = region_ids + [sorted_cand_object_ids, ]
total_vprompts = resized_padded_ot_visual_prompts.shape[0]
cand_visual_prompts = resized_padded_ot_visual_prompts[total_vprompts-num_vprompts_list[-1]:]
sorted_cand_visual_prompts = []
for sorted_idx in sorted_indices:
sorted_cand_visual_prompts.append(cand_visual_prompts[sorted_idx])
sorted_cand_visual_prompts = torch.stack(sorted_cand_visual_prompts)
resized_padded_ot_visual_prompts = torch.cat(
[resized_padded_ot_visual_prompts[:total_vprompts-num_vprompts_list[-1]], sorted_cand_visual_prompts])
# # ABLATION
# internvl_cand_visual_prompts = visual_prompts[total_vprompts-num_vprompts_list[-1]:]
# sorted_internvl_cand_visual_prompts = []
# for sorted_idx in sorted_indices:
# sorted_internvl_cand_visual_prompts.append(internvl_cand_visual_prompts[sorted_idx])
# sorted_internvl_cand_visual_prompts = torch.stack(sorted_internvl_cand_visual_prompts)
# visual_prompts = torch.cat([
# visual_prompts[:total_vprompts-num_vprompts_list[-1]], sorted_internvl_cand_visual_prompts
# ])
ret = preprocess_function(self.template, [deepcopy(data_item['conversations'])],
self.tokenizer, [self.patch_token * num_patch for num_patch in num_patches_list],
group_by_length=self.group_by_length, ds_name="XXX",
num_image=len(num_patches_list), object_tokens_str=object_tokens_str,)
roi_version = self.dataset_map_fn.__name__ == "match_reasoning_map_fn_roi"
# print("roi_version: ", roi_version)
# exit(0)
# Create the final return dictionary
ret = dict(
input_ids=ret['input_ids'][0],
labels=ret['labels'][0],
attention_mask=ret['attention_mask'][0],
pixel_values=pixel_values if not roi_version else merged_visual_prompts,
merged_visual_prompts=merged_visual_prompts if not roi_version else pixel_values,
image_flags=torch.tensor([1] * num_patches, dtype=torch.long),
num_patches=num_patches_list,
visual_prompts=visual_prompts.flatten(0, 1),
num_vprompts=num_vprompts_list,
vprompt_flags=[[1 for _ in range(nvp)] for nvp in num_vprompts_list],
num_images=len(num_vprompts_list),
ot_pixel_values=ot_pixel_values,
ot_visual_prompts=resized_padded_ot_visual_prompts,
region_ids=region_ids,
)
return ret
def video_get_item(self, data_item):
raise NotImplementedError
def pure_text_get_item(self, data_item):
ori_height = ori_width = 448
image = Image.new('RGB', (ori_height, ori_width), (255, 255, 255))
merged_visual_prompts = np.zeros((ori_height, ori_width, 3), dtype=np.uint8)
merged_visual_prompts = Image.fromarray(merged_visual_prompts)
# pad to square
image = expand2square(
image,
tuple(int(x * 255) for x in self.IMAGENET_MEAN))
images = [image]
merged_visual_prompts = expand2square(
merged_visual_prompts,
(0, 0, 0)
)
merged_regions = [merged_visual_prompts]
# Apply the transformation to each image and stack the results into a tensor
pixel_values = [self.transform(image) for image in images]
pixel_values = torch.stack(pixel_values) # num_patch, channels, h, w
merged_visual_prompts = [self.transform(merged_region) for merged_region in merged_regions]
merged_visual_prompts = torch.stack(merged_visual_prompts)
visual_prompts = torch.zeros(size=(
merged_visual_prompts.shape[0], merged_visual_prompts.shape[-2], merged_visual_prompts.shape[-1]),
dtype=torch.long).to(merged_visual_prompts.device)
if self.vfm_name == "DINOv2":
OT_FORCE_IMAGE_SIZE = 512
elif self.vfm_name in ["RADIO", "ConvNext"]:
OT_FORCE_IMAGE_SIZE = 1024
else:
raise NotImplementedError
image = Image.new('RGB', (OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE), (255, 255, 255))
ot_pixel_values = self.ot_image_processor(images=image, return_tensors='pt').pixel_values
ot_visual_prompts = torch.zeros((1, OT_FORCE_IMAGE_SIZE, OT_FORCE_IMAGE_SIZE)).\
to(ot_pixel_values.dtype).to(ot_pixel_values.device) # num_prompts, h, w
# assert ot_pixel_values.shape[-2:] == ot_visual_prompts.shape[-2:], f"ot_pixel_values.shape: {ot_pixel_values.shape[-2:]}, ot_visual_prompts.shape: {ot_visual_prompts.shape[-2:]}"
# Ensure that there is only one patch if dynamic image size is not enabled
num_patches = pixel_values.size(0)
if not self.dynamic_image_size:
assert num_patches == 1, f'The number of patches should be 1, but got {num_patches}.'
# Selcet the appropriate preprocessing function based on the template name
preprocess_function = self.get_preprocess_function()
# Preprocess the conversations and generate the return dictionary
ret = preprocess_function(self.template, [deepcopy(data_item['conversations'])],
self.tokenizer, [self.patch_token * num_patches], text_only=True,
group_by_length=self.group_by_length, ds_name="XXX",
num_image=0)
# Create the final return dictionary
ret = dict(
input_ids=ret['input_ids'][0],
labels=ret['labels'][0],
attention_mask=ret['attention_mask'][0],
pixel_values=pixel_values,
merged_visual_prompts=merged_visual_prompts,
image_flags=torch.tensor([0] * num_patches, dtype=torch.long),
num_patches=[num_patches, ],
visual_prompts=visual_prompts,
num_vprompts=[1, ],
vprompt_flags=[[0,],],
num_images=1,
ot_pixel_values=ot_pixel_values,
ot_visual_prompts=ot_visual_prompts,
region_ids=[[1,],],
)
return ret