zhouyik's picture
Upload folder using huggingface_hub
032e687 verified
import io
import math
import base64
import torch
import copy
import torchvision.transforms as transforms
import numpy as np
from PIL import Image
from einops import rearrange
from transformers import GenerationConfig, DynamicCache
from projects.ST.models.models_modeling_qwen2mm_mmrope import Qwen2MMmropeForCausalLM
from transformers import AutoTokenizer
def get_transformer_and_tokenizer(model_path, tokenizer_path):
model = Qwen2MMmropeForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, use_cache=False)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
tokenizer.vis_beg_tok = "<vision>"
tokenizer.vis_patch_tok = "<vpatch>"
tokenizer.vis_rsep_tok = "<vrow_sep>"
tokenizer.vis_frm_tok = "<vframe_sep>"
tokenizer.vis_end_tok = "</vision>"
tokenizer.vis_cls_tok = "<|vis_cls|>"
tokenizer.vis_beg_tok_id = tokenizer.convert_tokens_to_ids("<vision>")
tokenizer.vis_patch_tok_id = tokenizer.convert_tokens_to_ids("<vpatch>")
tokenizer.vis_rsep_tok_id = tokenizer.convert_tokens_to_ids("<vrow_sep>")
tokenizer.vis_frm_tok_id = tokenizer.convert_tokens_to_ids("<vframe_sep>")
tokenizer.vis_end_tok_id = tokenizer.convert_tokens_to_ids("</vision>")
tokenizer.vis_cls_tok_id = tokenizer.convert_tokens_to_ids("<|vis_cls|>")
return model, tokenizer
DEFAULT_PATCH_SIZE = 32
MAX_RESOLUTION = 1024
VISION_TOKENS = [
"<vision>", # vision begin
"<vpatch>", # patch
"<vrow_sep>", # row separator
"<vframe_sep>", # for video use case
"</vision>", # vision end
"<|vis_cls|>"
# *position_tokens,
]
NON_VISION_TOKEN_ID = -1
PROMPT_TMPL = '<|im_start|>user\n{input}<|im_end|>\n'
def load_image_to_base64(image_path: str) -> str:
# convert image to jpeg, then to data:image/jpeg;base64,
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
return f"data:image/jpeg;base64,{encoded_string}"
def load_base64_to_PILImage(base64_string: str) -> Image:
# convert data:image/jpeg;base64, to jpeg
base64_string = base64_string.split(",")[1]
decoded_string = base64.b64decode(base64_string)
return Image.open(io.BytesIO(decoded_string)).convert('RGB')
def get_resize_output_image_size(
image_size, patch_size, fix_res_size=None
) -> tuple:
if fix_res_size is not None:
return fix_res_size, fix_res_size
l1, l2 = image_size # 540, 32
short, long = (l2, l1) if l2 <= l1 else (l1, l2)
# set the nearest multiple of PATCH_SIZE for `long`
requested_new_long = min(
[
math.ceil(long / patch_size) * patch_size,
MAX_RESOLUTION,
]
)
new_long, new_short = requested_new_long, int(requested_new_long * short / long)
new_short = math.ceil(new_short / patch_size) * patch_size
return (new_long, new_short) if l2 <= l1 else (new_short, new_long)
def preprocess_image(
image_tensor: torch.Tensor,
patch_size: int = DEFAULT_PATCH_SIZE
) -> torch.Tensor:
# Reshape the image to get the patches
# shape changes: (C=3, H, W)
# -> (C, N_H_PATCHES, W, PATCH_H)
# -> (C, N_H_PATCHES, N_W_PATCHES, PATCH_H, PATCH_W)
patches = image_tensor.unfold(1, patch_size, patch_size) \
.unfold(2, patch_size, patch_size)
patches = patches.permute(1, 2, 0, 3, 4).contiguous() # -> (N_H_PATCHES, N_W_PATCHES, C, PATCH_H, PATCH_W)
return patches
def get_transform(height, width):
preprocess_transform = transforms.Compose([
transforms.Resize((height, width)),
transforms.ToTensor(), # Convert the image to a PyTorch tensor
transforms.Normalize(mean=[0.485, 0.456, 0.406], # Normalize with mean and
std=[0.229, 0.224, 0.225]) # standard deviation for pre-trained models on ImageNet
])
return preprocess_transform
def convert_image_base64_to_patches(base64_image: str, patch_size: int, fix_res_size: int = None) -> torch.Tensor:
img_pil = load_base64_to_PILImage(base64_image)
# resize the image to the nearest multiple of patch_size
width, height = img_pil.size
new_width, new_height = get_resize_output_image_size((width, height), patch_size=patch_size,
fix_res_size=fix_res_size)
img_tensor = get_transform(new_height, new_width)(img_pil) # 3,height, width
img_patches = preprocess_image(img_tensor, patch_size=patch_size) # seq_length, 64*64*3
return img_patches
def prepare_image_textual_seq(h, w, tokenizer, add_cls=True):
seq = ""
tok_len = 0
seq += tokenizer.vis_beg_tok
tok_len += 1
for _ in range(h - 1):
seq += tokenizer.vis_patch_tok * w + tokenizer.vis_rsep_tok
tok_len += (w + 1)
seq += tokenizer.vis_patch_tok * w + tokenizer.vis_end_tok
tok_len += (w + 1)
if add_cls:
seq += tokenizer.vis_cls_tok
tok_len += 1
return seq, tok_len
def prepare_image_textual_seq_norowsep(h, w, tokenizer, add_cls=True):
seq = ""
tok_len = 0
seq += tokenizer.vis_beg_tok
tok_len += 1
seq += tokenizer.vis_patch_tok * (w * h)
tok_len += (w * h)
seq += tokenizer.vis_end_tok
tok_len += 1
if add_cls:
seq += tokenizer.vis_cls_tok
tok_len += 1
return seq, tok_len
def create_single_prefix_mask(prefix_len, max_len):
attn_mask = torch.zeros(max_len, max_len)
attn_mask[:prefix_len, :prefix_len] = 1
causal_mask = torch.tril(torch.ones(max_len, max_len))
attn_mask = attn_mask.bool() | causal_mask.bool()
return attn_mask
def generate_mm_pos_ids_singleit(input_ids, vpatch_id, h, w):
input_ids_pt = torch.Tensor(input_ids).int()
vpatch_pos = torch.argwhere(input_ids_pt == vpatch_id)
vpatch_start_pos = vpatch_pos[0].item()
nt = len(input_ids) - (h * w) + 1
# v_pos
t_indices = torch.arange(1)
h_indices = torch.arange(h)
w_indices = torch.arange(w)
v_pos_id = torch.stack(torch.meshgrid(t_indices, h_indices, w_indices, indexing='ij'), dim=0)
v_pos_id = rearrange(v_pos_id, "d t h w -> (t h w) d") # [h*w, 3]
v_pos_id += vpatch_start_pos
position_id = torch.cat(
[
torch.arange(vpatch_start_pos).unsqueeze(-1).repeat(1, 3),
v_pos_id,
torch.arange(nt - vpatch_start_pos - 1).unsqueeze(-1).repeat(1, 3) + v_pos_id.max() + 1,
],
dim=0
)
assert len(input_ids) == position_id.size(0)
position_id = rearrange(position_id, "slen d -> d slen").long()
return position_id
class Qwen2mmMROPEModel:
INSTALL_REQ = False
INTERLEAVE = False
def __init__(self, model_path='/mnt/bn/zilongdata-us/weixian/ckpt/qwen2mm-7B-mrope',
tokenizer_path="/mnt/bn/zilongdata-us/weixian/ckpt/Qwen2.5MM-7B-ext-psz16", fix_res_size=None,
**kwargs):
model, tokenizer = get_transformer_and_tokenizer(
model_path, tokenizer_path
)
self.model = model.cuda().eval()
self.tokenizer = tokenizer
self.image_processor = lambda x: convert_image_base64_to_patches(load_image_to_base64(x),
model.config.vision_patch_size,
fix_res_size=fix_res_size)
self.kwargs = kwargs
def prepare_input(self, image, text_input):
text_input = text_input.replace("<image>\n", '').replace("\n<image>", '').replace("<image> ", '').replace(
" <image>", '')
bos_token = '' if self.tokenizer.bos_token is None else self.tokenizer.bos_token
text_input = bos_token + PROMPT_TMPL.format(input=text_input.strip())
if image is not None:
tokens = []
vision_patch_indices = []
vision_patches = []
patches = image
n_rows, n_cols = patches.shape[:2]
n_patches = n_rows * n_cols
patches = patches.view(n_patches, -1)
# ---
image_text_seq, image_tok_len = prepare_image_textual_seq_norowsep(n_rows, n_cols, self.tokenizer,
add_cls=False)
# ---
cur_tokens_pt = self.tokenizer(image_text_seq, add_special_tokens=False,
return_tensors="pt").input_ids.squeeze(0)
cur_patch_indices = torch.full_like(cur_tokens_pt, fill_value=NON_VISION_TOKEN_ID)
assert (cur_tokens_pt == self.tokenizer.vis_patch_tok_id).sum() == n_patches
assert (cur_tokens_pt >= self.tokenizer.vis_beg_tok_id).sum() == image_tok_len
cur_patch_indices[cur_tokens_pt == self.tokenizer.vis_patch_tok_id] = torch.arange(n_patches)
cur_tokens = cur_tokens_pt.cpu().numpy().tolist()
cur_patch_indices = cur_patch_indices.cpu().numpy().tolist()
assert len(cur_tokens) == len(cur_patch_indices)
tokens.extend(cur_tokens)
vision_patch_indices.extend(cur_patch_indices)
vision_patches.extend(patches.numpy().astype(np.float16))
# For text after images
_tokenized_text = self.tokenizer(text_input, return_tensors="pt", add_special_tokens=False)
cur_tokens = _tokenized_text["input_ids"].squeeze(0)
tokens.extend(cur_tokens)
vision_patch_indices.extend([NON_VISION_TOKEN_ID] * len(cur_tokens))
position_ids = generate_mm_pos_ids_singleit(tokens, self.tokenizer.vis_patch_tok_id, n_rows,
n_cols) # [3, slen]
attention_mask_4d = create_single_prefix_mask(image_tok_len, len(tokens)).unsqueeze(0) # [1, slen, slen]
print('ids: ', tokens)
tokens = torch.Tensor(tokens).long()
print('vision_patches_indices: ', vision_patch_indices)
vision_patch_indices = torch.Tensor(vision_patch_indices).long()
if len(vision_patches) > 0:
# convert vision patches to numpy
vision_patches = np.array(vision_patches)
vision_patches = torch.Tensor(vision_patches).bfloat16()
else:
vision_patches = None
tokens = tokens.unsqueeze(0)
position_ids = position_ids.unsqueeze(1)
attention_mask_4d = attention_mask_4d.unsqueeze(0)
vision_patch_indices = vision_patch_indices.unsqueeze(0)
attn_mask_for_gen = torch.ones_like(tokens)
return dict(
input_ids=tokens.to("cuda"),
position_ids=position_ids.to("cuda"),
attention_mask=attn_mask_for_gen.to("cuda"),
vision_patches=vision_patches.to("cuda"),
vision_patch_indices=vision_patch_indices.to("cuda"),
attention_mask_4d=attention_mask_4d.to("cuda"),
image_tokens_len=image_tok_len
)
# image is None
_text_inputs = self.tokenizer(text_input, return_tensors="pt", add_special_tokens=False)
text_input_ids = _text_inputs['input_ids']
text_attn_mask = _text_inputs['attention_mask']
text_position_ids = torch.arange(text_input_ids.size(-1)).unsqueeze(0).expand(3, -1).clone().long()
return dict(
input_ids=text_input_ids.long().to("cuda"),
attention_mask=text_attn_mask.long().to("cuda"),
position_ids=text_position_ids.unsqueeze(1).to("cuda"),
vision_patches=None,
vision_patch_indices=None,
attention_mask_4d=None,
image_tokens_len=None
)
def message_to_promptimg(self, message, dataset=None):
assert not self.INTERLEAVE
num_images = len([x for x in message if x['type'] == 'image'])
if num_images == 0:
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
image = None
else:
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
images = [x['value'] for x in message if x['type'] == 'image']
image = images[0]
return prompt, image
def generate_inner(self, message, dataset=None):
prompt, image_path = self.message_to_promptimg(message, dataset=dataset)
image_patches = None if image_path is None else \
self.image_processor(image_path)
inputs = self.prepare_input(image_patches, prompt)
past_key_values = None
image_tok_len = inputs.pop("image_tokens_len")
attention_mask_4d = inputs.pop("attention_mask_4d")
if image_tok_len is not None and attention_mask_4d is not None:
assert (attention_mask_4d[:, :, :image_tok_len, :image_tok_len] == 1).all()
assert inputs["vision_patches"] is not None
assert inputs["vision_patch_indices"] is not None
prefix_cache = DynamicCache()
cache_inputs = dict(
input_ids=inputs['input_ids'][:, :image_tok_len],
position_ids=inputs['position_ids'][:, :, :image_tok_len],
attention_mask=attention_mask_4d[:, :, :image_tok_len, :image_tok_len],
vision_patches=inputs['vision_patches'],
vision_patch_indices=inputs['vision_patch_indices'][:, :image_tok_len],
)
with torch.no_grad():
prefix_cache = self.model(**cache_inputs, past_key_values=prefix_cache, use_cache=True).past_key_values
past_key_values = copy.deepcopy(prefix_cache)
generation_args = GenerationConfig(
do_sample=False,
top_p=None,
temperature=0,
num_beams=1,
max_new_tokens=128,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
)
generate_ids = self.model.generate(
**inputs,
past_key_values=past_key_values,
use_cache=True,
eos_token_id=self.tokenizer.eos_token_id,
generation_config=generation_args
)
print(generate_ids)
# generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = self.tokenizer.batch_decode(
generate_ids,
skip_special_tokens=False,
clean_up_tokenization_spaces=False
)[0]
return response
def generate_ext_eval(self, args, prompt, image_path=None, generate_config=None):
image_patches = None if image_path is None else \
self.image_processor(image_path)
inputs = self.prepare_input(image_patches, prompt)
past_key_values = None
image_tok_len = inputs.pop("image_tokens_len")
attention_mask_4d = inputs.pop("attention_mask_4d")
if image_tok_len is not None and attention_mask_4d is not None:
assert (attention_mask_4d[:, :, :image_tok_len, :image_tok_len] == 1).all()
assert inputs["vision_patches"] is not None
assert inputs["vision_patch_indices"] is not None
prefix_cache = DynamicCache()
cache_inputs = dict(
input_ids=inputs['input_ids'][:, :image_tok_len],
position_ids=inputs['position_ids'][:, :, :image_tok_len],
attention_mask=attention_mask_4d[:, :, :image_tok_len, :image_tok_len],
vision_patches=inputs['vision_patches'],
vision_patch_indices=inputs['vision_patch_indices'][:, :image_tok_len],
)
with torch.no_grad():
prefix_cache = self.model(**cache_inputs, past_key_values=prefix_cache, use_cache=True).past_key_values
past_key_values = copy.deepcopy(prefix_cache)
generation_args = GenerationConfig(
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
num_beams=args.num_beams,
max_new_tokens=args.max_new_tokens,
min_new_tokens=1,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
) if generate_config is None else GenerationConfig(**generate_config)
generate_ids = self.model.generate(
**inputs,
past_key_values=past_key_values,
use_cache=True,
eos_token_id=self.tokenizer.eos_token_id,
generation_config=generation_args
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = self.tokenizer.batch_decode(
generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
return response
tokenizer_path = './pretrained/single_transformer/capcls1.0_1024M_imgfull_withpt_lr5e-4-0_rp0.1_iter62500_hf/'
path = './pretrained/single_transformer/SFT-Qwen2.5-0.5B-capcls1.0_1024M_iter_62500_lr5e-4_0_rp0.1_hf_llava/'
evaluation_images = './projects/omg_llava/test.jpg'
evaluation_inputs = ['Please describe this picture']
messages = []
messages.append({'type': 'image', 'value': evaluation_images})
messages.append({'type': 'text', 'value': evaluation_inputs[0]})
model = Qwen2mmMROPEModel(model_path=path, tokenizer_path=tokenizer_path)
ret = model.generate_inner(message=messages)
print(ret)