|
from typing import List, Optional |
|
|
|
import torch |
|
from transformers import PreTrainedModel |
|
|
|
from xtuner.utils import IGNORE_INDEX, IMAGE_TOKEN_INDEX |
|
|
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
llm: PreTrainedModel, |
|
input_ids: torch.LongTensor = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
region_masks = None, |
|
): |
|
if pixel_values is None: |
|
return { |
|
'input_ids': input_ids, |
|
'position_ids': position_ids, |
|
'attention_mask': attention_mask, |
|
'past_key_values': past_key_values, |
|
'inputs_embeds': None, |
|
'labels': labels |
|
} |
|
|
|
|
|
new_pixel_values = [] |
|
assert len(pixel_values) == len(region_masks) |
|
for batch_pixel_values, batch_region_masks in zip(pixel_values, region_masks): |
|
batch_region_masks = batch_region_masks.flatten(1).to(torch.bool) |
|
for batch_region_mask in batch_region_masks: |
|
new_pixel_values.append(batch_pixel_values[batch_region_mask]) |
|
pixel_values = new_pixel_values |
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
input_ids = [ |
|
cur_input_ids[cur_attention_mask] |
|
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask) |
|
] |
|
labels = [ |
|
cur_labels[cur_attention_mask] |
|
for cur_labels, cur_attention_mask in zip(labels, attention_mask) |
|
] |
|
|
|
new_inputs_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
if num_images == 0: |
|
cur_pixel_values = pixel_values[cur_image_idx] |
|
cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids) |
|
cur_inputs_embeds = torch.cat( |
|
[cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0) |
|
new_inputs_embeds.append(cur_inputs_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = [-1] + torch.where( |
|
cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [ |
|
cur_input_ids.shape[0] |
|
] |
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + |
|
1:image_token_indices[i + |
|
1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i] + |
|
1:image_token_indices[i + 1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_inputs_embeds = llm.get_input_embeddings()( |
|
torch.cat(cur_input_ids_noim)) |
|
cur_inputs_embeds_no_im = torch.split( |
|
cur_inputs_embeds, split_sizes, dim=0) |
|
cur_new_inputs_embeds = [] |
|
cur_new_labels = [] |
|
|
|
for i in range(num_images + 1): |
|
cur_new_inputs_embeds.append(cur_inputs_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
if i < num_images: |
|
cur_pixel_values = pixel_values[cur_image_idx] |
|
cur_image_idx += 1 |
|
cur_new_inputs_embeds.append(cur_pixel_values) |
|
cur_new_labels.append( |
|
torch.full((cur_pixel_values.shape[0], ), |
|
IGNORE_INDEX, |
|
device=cur_labels.device, |
|
dtype=cur_labels.dtype)) |
|
|
|
cur_new_inputs_embeds = torch.cat(cur_new_inputs_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_inputs_embeds.append(cur_new_inputs_embeds) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
max_len = max(x.shape[0] for x in new_inputs_embeds) |
|
batch_size = len(new_inputs_embeds) |
|
|
|
new_inputs_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), |
|
IGNORE_INDEX, |
|
dtype=new_labels[0].dtype, |
|
device=new_labels[0].device) |
|
attention_mask = torch.zeros((batch_size, max_len), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), |
|
dtype=position_ids.dtype, |
|
device=position_ids.device) |
|
|
|
for i, (cur_new_embed, |
|
cur_new_labels) in enumerate(zip(new_inputs_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
new_inputs_embeds_padded.append( |
|
torch.cat((cur_new_embed, |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), |
|
dtype=cur_new_embed.dtype, |
|
device=cur_new_embed.device)), |
|
dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange( |
|
0, |
|
cur_len, |
|
dtype=position_ids.dtype, |
|
device=position_ids.device) |
|
|
|
new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0) |
|
|
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
return { |
|
'input_ids': None, |
|
'position_ids': position_ids, |
|
'attention_mask': attention_mask, |
|
'past_key_values': past_key_values, |
|
'inputs_embeds': new_inputs_embeds, |
|
'labels': new_labels |
|
} |