from typing import List, Optional import torch from transformers import PreTrainedModel from xtuner.utils import IGNORE_INDEX, IMAGE_TOKEN_INDEX def prepare_inputs_labels_for_multimodal( llm: PreTrainedModel, input_ids: torch.LongTensor = None, position_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, region_masks = None, ): if pixel_values is None: return { 'input_ids': input_ids, 'position_ids': position_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'inputs_embeds': None, 'labels': labels } # pixel_values (b, n, c) new_pixel_values = [] assert len(pixel_values) == len(region_masks) for batch_pixel_values, batch_region_masks in zip(pixel_values, region_masks): batch_region_masks = batch_region_masks.flatten(1).to(torch.bool) for batch_region_mask in batch_region_masks: new_pixel_values.append(batch_pixel_values[batch_region_mask]) pixel_values = new_pixel_values _labels = labels _position_ids = position_ids _attention_mask = attention_mask if attention_mask is None: attention_mask = torch.ones_like(input_ids, dtype=torch.bool) else: attention_mask = attention_mask.bool() if position_ids is None: position_ids = torch.arange( 0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) if labels is None: labels = torch.full_like(input_ids, IGNORE_INDEX) # remove the padding using attention_mask -- TODO: double check input_ids = [ cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask) ] labels = [ cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask) ] new_inputs_embeds = [] new_labels = [] cur_image_idx = 0 for batch_idx, cur_input_ids in enumerate(input_ids): num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() if num_images == 0: cur_pixel_values = pixel_values[cur_image_idx] cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids) cur_inputs_embeds = torch.cat( [cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0) new_inputs_embeds.append(cur_inputs_embeds) new_labels.append(labels[batch_idx]) cur_image_idx += 1 continue image_token_indices = [-1] + torch.where( cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [ cur_input_ids.shape[0] ] cur_input_ids_noim = [] cur_labels = labels[batch_idx] cur_labels_noim = [] for i in range(len(image_token_indices) - 1): cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1:image_token_indices[i + 1]]) cur_labels_noim.append(cur_labels[image_token_indices[i] + 1:image_token_indices[i + 1]]) split_sizes = [x.shape[0] for x in cur_labels_noim] cur_inputs_embeds = llm.get_input_embeddings()( torch.cat(cur_input_ids_noim)) cur_inputs_embeds_no_im = torch.split( cur_inputs_embeds, split_sizes, dim=0) cur_new_inputs_embeds = [] cur_new_labels = [] for i in range(num_images + 1): cur_new_inputs_embeds.append(cur_inputs_embeds_no_im[i]) cur_new_labels.append(cur_labels_noim[i]) if i < num_images: cur_pixel_values = pixel_values[cur_image_idx] cur_image_idx += 1 cur_new_inputs_embeds.append(cur_pixel_values) cur_new_labels.append( torch.full((cur_pixel_values.shape[0], ), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) cur_new_inputs_embeds = torch.cat(cur_new_inputs_embeds) cur_new_labels = torch.cat(cur_new_labels) new_inputs_embeds.append(cur_new_inputs_embeds) new_labels.append(cur_new_labels) # Combine them max_len = max(x.shape[0] for x in new_inputs_embeds) batch_size = len(new_inputs_embeds) new_inputs_embeds_padded = [] new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_inputs_embeds, new_labels)): cur_len = cur_new_embed.shape[0] new_inputs_embeds_padded.append( torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)) if cur_len > 0: new_labels_padded[i, :cur_len] = cur_new_labels attention_mask[i, :cur_len] = True position_ids[i, :cur_len] = torch.arange( 0, cur_len, dtype=position_ids.dtype, device=position_ids.device) new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0) if _labels is None: new_labels = None else: new_labels = new_labels_padded if _attention_mask is None: attention_mask = None else: attention_mask = attention_mask.to(dtype=_attention_mask.dtype) if _position_ids is None: position_ids = None return { 'input_ids': None, 'position_ids': position_ids, 'attention_mask': attention_mask, 'past_key_values': past_key_values, 'inputs_embeds': new_inputs_embeds, 'labels': new_labels }