|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- absa |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: dan lembut, pai yang dibawa pulang menjadi basah di:Karena kulitnya yang tipis |
|
dan lembut, pai yang dibawa pulang menjadi basah di dalam kotaknya. |
|
- text: mungkin untuk mengkritik makanannya tersebut.:Dari makanan pembuka yang kami |
|
makan, dim sum, dan variasi makanannya lainnya, tidak mungkin untuk mengkritik |
|
makanannya tersebut. |
|
- text: di sana untuk Spesial Sabtu Malam Setengah Harga, tetapi Selasa:Saya tidak |
|
ada di sana untuk Spesial Sabtu Malam Setengah Harga, tetapi Selasa Malam. |
|
- text: dan mengatur ulang meja untuk enam orang:Di sebelah kanan saya, nyonya rumah |
|
berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba |
|
membersihkan dan mengatur ulang meja untuk enam orang. |
|
- text: Jika Anda menyukai makanannya dan nilai yang:Jika Anda menyukai makanannya |
|
dan nilai yang Anda dapatkan dari beberapa restoran Chinatown, ini bukan tempat |
|
untuk Anda. |
|
pipeline_tag: text-classification |
|
inference: false |
|
model-index: |
|
- name: SetFit Polarity Model |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.6568627450980392 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit Polarity Model |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
This model was trained within the context of a larger system for ABSA, which looks like so: |
|
|
|
1. Use a spaCy model to select possible aspect span candidates. |
|
2. Use a SetFit model to filter these possible aspect span candidates. |
|
3. **Use this SetFit model to classify the filtered aspect span candidates.** |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **spaCy Model:** id_core_news_trf |
|
- **SetFitABSA Aspect Model:** [zeroix07/indo-setfit-absa-model-aspect](https://huggingface.co/zeroix07/indo-setfit-absa-model-aspect) |
|
- **SetFitABSA Polarity Model:** [zeroix07/indo-setfit-absa-model-polarity](https://huggingface.co/zeroix07/indo-setfit-absa-model-polarity) |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Number of Classes:** 3 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:--------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| positif | <ul><li>'faktor penebusan adalah makanannya, yang berada:Agar benar-benar adil, satu-satunya faktor penebusan adalah makanannya, yang berada di atas rata-rata, tetapi tidak dapat menutupi semua kekurangan Teodora lainnya.'</li><li>'makanannya benar-benar luar biasa:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'</li><li>'biasa, dengan dapur yang sangat mumpuni:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'</li></ul> | |
|
| netral | <ul><li>'itu ada di menu atau tidak.:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'</li><li>'bisa mencicipi kedua daging tersebut).:Favorit kami yang disepakati adalah orrechiete dengan sosis dan ayam (biasanya para pelayan berbaik hati membagi hidangan menjadi dua sehingga Anda bisa mencicipi kedua daging tersebut).'</li><li>'jika Anda suka pizza berkulit tipis.:Pizza adalah yang terbaik jika Anda suka pizza berkulit tipis.'</li></ul> | |
|
| negatif | <ul><li>'yang masuk ke koki.:Semua uang digunakan untuk dekorasi interior, tidak ada satupun yang masuk ke koki.'</li><li>'masuk akal meskipun layanannya buruk.:Harganya masuk akal meskipun layanannya buruk.'</li><li>'mayones, lupa roti panggang kami, meninggalkan:Mereka tidak memiliki mayones, lupa roti panggang kami, meninggalkan bahan-bahan (yaitu keju dalam telur dadar), di bawah suhu panas dan daging terlalu matang sehingga hancur di piring ketika Anda menyentuhnya.'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.6569 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import AbsaModel |
|
|
|
# Download from the 🤗 Hub |
|
model = AbsaModel.from_pretrained( |
|
"zeroix07/indo-setfit-absa-model-aspect", |
|
"zeroix07/indo-setfit-absa-model-polarity", |
|
) |
|
# Run inference |
|
preds = model("The food was great, but the venue is just way too busy.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 5 | 21.6519 | 45 | |
|
|
|
| Label | Training Sample Count | |
|
|:--------|:----------------------| |
|
| konflik | 0 | |
|
| negatif | 48 | |
|
| netral | 69 | |
|
| positif | 64 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (6, 6) |
|
- num_epochs: (1, 16) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: True |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0003 | 1 | 0.2985 | - | |
|
| 0.0139 | 50 | 0.14 | - | |
|
| 0.0278 | 100 | 0.0913 | - | |
|
| 0.0417 | 150 | 0.0447 | - | |
|
| 0.0556 | 200 | 0.0932 | - | |
|
| 0.0694 | 250 | 0.2864 | - | |
|
| 0.0833 | 300 | 0.2556 | - | |
|
| 0.0972 | 350 | 0.1447 | - | |
|
| 0.1111 | 400 | 0.0084 | - | |
|
| 0.125 | 450 | 0.003 | - | |
|
| 0.1389 | 500 | 0.0035 | - | |
|
| 0.1528 | 550 | 0.0074 | - | |
|
| 0.1667 | 600 | 0.0031 | - | |
|
| 0.1806 | 650 | 0.0014 | - | |
|
| 0.1944 | 700 | 0.002 | - | |
|
| 0.2083 | 750 | 0.0006 | - | |
|
| 0.2222 | 800 | 0.0005 | - | |
|
| 0.2361 | 850 | 0.0005 | - | |
|
| 0.25 | 900 | 0.0005 | - | |
|
| 0.2639 | 950 | 0.0015 | - | |
|
| 0.2778 | 1000 | 0.0007 | - | |
|
| 0.2917 | 1050 | 0.0006 | - | |
|
| 0.3056 | 1100 | 0.0006 | - | |
|
| 0.3194 | 1150 | 0.0007 | - | |
|
| 0.3333 | 1200 | 0.0091 | - | |
|
| 0.3472 | 1250 | 0.0004 | - | |
|
| 0.3611 | 1300 | 0.0003 | - | |
|
| 0.375 | 1350 | 0.0005 | - | |
|
| 0.3889 | 1400 | 0.0006 | - | |
|
| 0.4028 | 1450 | 0.0434 | - | |
|
| 0.4167 | 1500 | 0.0006 | - | |
|
| 0.4306 | 1550 | 0.0003 | - | |
|
| 0.4444 | 1600 | 0.0005 | - | |
|
| 0.4583 | 1650 | 0.0004 | - | |
|
| 0.4722 | 1700 | 0.0021 | - | |
|
| 0.4861 | 1750 | 0.0012 | - | |
|
| 0.5 | 1800 | 0.0004 | - | |
|
| 0.5139 | 1850 | 0.0005 | - | |
|
| 0.5278 | 1900 | 0.0004 | - | |
|
| 0.5417 | 1950 | 0.0003 | - | |
|
| 0.5556 | 2000 | 0.0003 | - | |
|
| 0.5694 | 2050 | 0.0005 | - | |
|
| 0.5833 | 2100 | 0.0004 | - | |
|
| 0.5972 | 2150 | 0.0004 | - | |
|
| 0.6111 | 2200 | 0.0005 | - | |
|
| 0.625 | 2250 | 0.0004 | - | |
|
| 0.6389 | 2300 | 0.0005 | - | |
|
| 0.6528 | 2350 | 0.0004 | - | |
|
| 0.6667 | 2400 | 0.0003 | - | |
|
| 0.6806 | 2450 | 0.0004 | - | |
|
| 0.6944 | 2500 | 0.0007 | - | |
|
| 0.7083 | 2550 | 0.0003 | - | |
|
| 0.7222 | 2600 | 0.0003 | - | |
|
| 0.7361 | 2650 | 0.101 | - | |
|
| 0.75 | 2700 | 0.0003 | - | |
|
| 0.7639 | 2750 | 0.0004 | - | |
|
| 0.7778 | 2800 | 0.0004 | - | |
|
| 0.7917 | 2850 | 0.0003 | - | |
|
| 0.8056 | 2900 | 0.0004 | - | |
|
| 0.8194 | 2950 | 0.0899 | - | |
|
| 0.8333 | 3000 | 0.0003 | - | |
|
| 0.8472 | 3050 | 0.0002 | - | |
|
| 0.8611 | 3100 | 0.0002 | - | |
|
| 0.875 | 3150 | 0.0003 | - | |
|
| 0.8889 | 3200 | 0.0002 | - | |
|
| 0.9028 | 3250 | 0.0003 | - | |
|
| 0.9167 | 3300 | 0.0004 | - | |
|
| 0.9306 | 3350 | 0.0003 | - | |
|
| 0.9444 | 3400 | 0.0003 | - | |
|
| 0.9583 | 3450 | 0.0547 | - | |
|
| 0.9722 | 3500 | 0.0003 | - | |
|
| 0.9861 | 3550 | 0.0004 | - | |
|
| 1.0 | 3600 | 0.0002 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.7.0 |
|
- spaCy: 3.7.4 |
|
- Transformers: 4.36.2 |
|
- PyTorch: 2.1.2 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |