|
--- |
|
language: |
|
- en |
|
- zh |
|
license: apache-2.0 |
|
library_name: zero |
|
tags: |
|
- multimodal |
|
- vqa |
|
- text |
|
- audio |
|
datasets: |
|
- synthetic-dataset |
|
metrics: |
|
- accuracy |
|
- bleu |
|
- wer |
|
model-index: |
|
- name: AutoModel |
|
results: |
|
- task: |
|
type: vqa |
|
name: Visual Question Answering |
|
dataset: |
|
type: synthetic-dataset |
|
name: Synthetic Multimodal Dataset |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 85 |
|
pipeline_tag: any-to-any |
|
|
|
model_index: |
|
- name: AutoModel |
|
results: |
|
- task: |
|
type: vqa |
|
name: Visual Question Answering |
|
dataset: |
|
type: synthetdataset |
|
name: Synthetic Multimodal Dataset |
|
config: default |
|
split: test |
|
revision: main |
|
metrics: |
|
- type: accuracy |
|
value: 85.0 |
|
name: VQA Accuracy |
|
- task: |
|
type: automatspeerecognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
type: synthetdataset |
|
name: Synthetic Multimodal Dataset |
|
config: default |
|
split: test |
|
revision: main |
|
metrics: |
|
- type: wer |
|
value: 15.3 |
|
name: Test WER |
|
- task: |
|
type: captioning |
|
name: Image Captioning |
|
dataset: |
|
type: synthetdataset |
|
name: Synthetic Multimodal Dataset |
|
config: default |
|
split: test |
|
revision: main |
|
metrics: |
|
- type: bleu |
|
value: 27.5 |
|
name: BL4 |
|
|
|
|
|
|
|
--- |
|
### **3. 提供可下载文件** |
|
确保以下文件已上传到仓库,便于用户下载和运行: |
|
- **模型权重文件**(如 `AutoModel.pth`)。 |
|
- **配置文件**(如 `config.json`)。 |
|
- **依赖文件**(如 `requirements.txt`)。 |
|
- **运行脚本**(如 `run_model.py`)。 |
|
-- |
|
用户可以直接下载这些文件并运行模型。 |
|
|
|
--- |
|
|
|
### **4. 自动运行模型的限制** |
|
Hugging Face Hub 本身不能自动运行上传的模型,但通过 `Spaces` 提供的接口可以解决这一问题。`Spaces` 能够运行托管的推理服务,让用户无需本地配置即可测试模型。 |
|
|
|
--- |
|
|
|
### **推荐方法** |
|
- **快速测试**:使用 Hugging Face `Spaces` 创建在线演示。 |
|
- **高级使用**:在模型卡中提供完整的运行说明,允许用户本地运行模型。 |
|
|
|
通过这些方式,您可以让模型仓库既支持在线运行,也便于用户离线部署。 |
|
|
|
## Uses |
|
```python |
|
import os |
|
import torch |
|
from model import AutoModel, Config |
|
|
|
def load_model(model_path, config_path): |
|
""" |
|
加载模型权重和配置 |
|
""" |
|
# 加载配置 |
|
if not os.path.exists(config_path): |
|
raise FileNotFoundError(f"配置文件未找到: {config_path}") |
|
print(f"加载配置文件: {config_path}") |
|
config = Config() |
|
|
|
# 初始化模型 |
|
model = AutoModel(config) |
|
|
|
# 加载权重 |
|
if not os.path.exists(model_path): |
|
raise FileNotFoundError(f"模型文件未找到: {model_path}") |
|
print(f"加载模型权重: {model_path}") |
|
state_dict = torch.load(model_path, map_location=torch.device("cpu")) |
|
model.load_state_dict(state_dict) |
|
model.eval() |
|
print("模型加载成功并设置为评估模式。") |
|
|
|
return model, config |
|
|
|
|
|
def run_inference(model, config): |
|
""" |
|
使用模型运行推理 |
|
""" |
|
# 模拟示例输入 |
|
image = torch.randn(1, 3, 224, 224) # 图像输入 |
|
text = torch.randn(1, config.max_position_embeddings, config.hidden_size) # 文本输入 |
|
audio = torch.randn(1, config.audio_sample_rate) # 音频输入 |
|
|
|
# 模型推理 |
|
outputs = model(image, text, audio) |
|
vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output = outputs |
|
|
|
# 打印结果 |
|
print("\n推理结果:") |
|
print(f"VQA output shape: {vqa_output.shape}") |
|
print(f"Caption output shape: {caption_output.shape}") |
|
print(f"Retrieval output shape: {retrieval_output.shape}") |
|
print(f"ASR output shape: {asr_output.shape}") |
|
print(f"Realtime ASR output shape: {realtime_asr_output.shape}") |
|
|
|
if __name__ == "__main__": |
|
# 文件路径 |
|
model_path = "AutoModel.pth" |
|
config_path = "config.json" |
|
|
|
# 加载模型 |
|
try: |
|
model, config = load_model(model_path, config_path) |
|
|
|
# 运行推理 |
|
run_inference(model, config) |
|
except Exception as e: |
|
print(f"运行失败: {e}") |
|
``` |
|
|
|
### Direct Use |
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
[More Information Needed] |
|
|
|
### Downstream Use [optional] |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
[More Information Needed] |
|
|
|
### Out-of-Scope Use |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
[More Information Needed] |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
[More Information Needed] |
|
|
|
### Recommendations |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
[More Information Needed] |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
|
|
[More Information Needed] |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
#### Preprocessing [optional] |
|
|
|
[More Information Needed] |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
[More Information Needed] |
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Dataset Card if possible. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Factors |
|
|
|
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
[More Information Needed] |
|
|
|
### Results |
|
|
|
[More Information Needed] |
|
|
|
#### Summary |
|
|
|
|
|
|
|
## Model Examination [optional] |
|
|
|
<!-- Relevant interpretability work for the model goes here --> |
|
|
|
[More Information Needed] |
|
|
|
## Environmental Impact |
|
|
|
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** [More Information Needed] |
|
- **Hours used:** [More Information Needed] |
|
- **Cloud Provider:** [More Information Needed] |
|
- **Compute Region:** [More Information Needed] |
|
- **Carbon Emitted:** [More Information Needed] |
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
[More Information Needed] |
|
|
|
### Compute Infrastructure |
|
|
|
[More Information Needed] |
|
|
|
#### Hardware |
|
|
|
[More Information Needed] |
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
[More Information Needed] |
|
|
|
## More Information [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
[More Information Needed] |