auto / README.md
zeroMN's picture
Update README.md
a65107a verified
---
language:
- en
- zh
license: apache-2.0
library_name: zero
tags:
- multimodal
- vqa
- text
- audio
datasets:
- synthetic-dataset
metrics:
- accuracy
- bleu
- wer
model-index:
- name: AutoModel
results:
- task:
type: vqa
name: Visual Question Answering
dataset:
type: synthetic-dataset
name: Synthetic Multimodal Dataset
split: test
metrics:
- type: accuracy
value: 85
pipeline_tag: any-to-any
model_index:
- name: AutoModel
results:
- task:
type: vqa # 支持视觉问答任务
name: Visual Question Answering
dataset:
type: synthetdataset
name: Synthetic Multimodal Dataset
config: default
split: test
revision: main
metrics:
- type: accuracy
value: 85.0
name: VQA Accuracy
- task:
type: automatspeerecognition
name: Automatic Speech Recognition
dataset:
type: synthetdataset
name: Synthetic Multimodal Dataset
config: default
split: test
revision: main
metrics:
- type: wer
value: 15.3
name: Test WER
- task:
type: captioning
name: Image Captioning
dataset:
type: synthetdataset
name: Synthetic Multimodal Dataset
config: default
split: test
revision: main
metrics:
- type: bleu
value: 27.5
name: BL4
---
### **3. 提供可下载文件**
确保以下文件已上传到仓库,便于用户下载和运行:
- **模型权重文件**(如 `AutoModel.pth`)。
- **配置文件**(如 `config.json`)。
- **依赖文件**(如 `requirements.txt`)。
- **运行脚本**(如 `run_model.py`)。
--
用户可以直接下载这些文件并运行模型。
---
### **4. 自动运行模型的限制**
Hugging Face Hub 本身不能自动运行上传的模型,但通过 `Spaces` 提供的接口可以解决这一问题。`Spaces` 能够运行托管的推理服务,让用户无需本地配置即可测试模型。
---
### **推荐方法**
- **快速测试**:使用 Hugging Face `Spaces` 创建在线演示。
- **高级使用**:在模型卡中提供完整的运行说明,允许用户本地运行模型。
通过这些方式,您可以让模型仓库既支持在线运行,也便于用户离线部署。
## Uses
```python
import os
import torch
from model import AutoModel, Config
def load_model(model_path, config_path):
"""
加载模型权重和配置
"""
# 加载配置
if not os.path.exists(config_path):
raise FileNotFoundError(f"配置文件未找到: {config_path}")
print(f"加载配置文件: {config_path}")
config = Config()
# 初始化模型
model = AutoModel(config)
# 加载权重
if not os.path.exists(model_path):
raise FileNotFoundError(f"模型文件未找到: {model_path}")
print(f"加载模型权重: {model_path}")
state_dict = torch.load(model_path, map_location=torch.device("cpu"))
model.load_state_dict(state_dict)
model.eval()
print("模型加载成功并设置为评估模式。")
return model, config
def run_inference(model, config):
"""
使用模型运行推理
"""
# 模拟示例输入
image = torch.randn(1, 3, 224, 224) # 图像输入
text = torch.randn(1, config.max_position_embeddings, config.hidden_size) # 文本输入
audio = torch.randn(1, config.audio_sample_rate) # 音频输入
# 模型推理
outputs = model(image, text, audio)
vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output = outputs
# 打印结果
print("\n推理结果:")
print(f"VQA output shape: {vqa_output.shape}")
print(f"Caption output shape: {caption_output.shape}")
print(f"Retrieval output shape: {retrieval_output.shape}")
print(f"ASR output shape: {asr_output.shape}")
print(f"Realtime ASR output shape: {realtime_asr_output.shape}")
if __name__ == "__main__":
# 文件路径
model_path = "AutoModel.pth"
config_path = "config.json"
# 加载模型
try:
model, config = load_model(model_path, config_path)
# 运行推理
run_inference(model, config)
except Exception as e:
print(f"运行失败: {e}")
```
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]