|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import warnings |
|
from typing import TYPE_CHECKING, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
from fla.modules import RMSNorm |
|
from fla.modules.activations import swish, sigmoid |
|
from fla.modules.layernorm import rms_norm_linear |
|
from fla.ops.scan import parallel_scan, naive_recurrent_scan |
|
|
|
if TYPE_CHECKING: |
|
from fla.models.utils import Cache |
|
|
|
def build_alibi_tensor_scan(head_num, seq_len, window_len, state_size): |
|
slopes = torch.tensor([2 ** (-8.0 * i / head_num) for i in range(head_num)]) |
|
alibi = torch.zeros((head_num, seq_len, window_len)) |
|
for i in range(seq_len): |
|
for j in range(window_len): |
|
if i < window_len: |
|
alibi[:, i, j] = slopes * (j - window_len + 1) if i > (window_len - j - 2) else 0 |
|
else: |
|
alibi[:, i, j] = alibi[:, window_len-1, j] |
|
|
|
alibi = torch.cat((torch.zeros(head_num, seq_len, state_size), alibi), dim=2) |
|
return alibi |
|
|
|
def scores_mask(T, W, S): |
|
|
|
mask = torch.tril(torch.ones(W, W)).flip(1) |
|
|
|
mask = torch.cat((mask, torch.ones(T-W, W)), dim=0) |
|
|
|
mask = torch.cat((torch.ones(T, S), mask), dim=1) |
|
return mask |
|
|
|
class SemiCompressedAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
mode: str = 'parallel', |
|
hidden_size: int = 1024, |
|
window_size: int = 512, |
|
state_size: int = 64, |
|
gate_act: str = 'softmax', |
|
max_position_embeddings: Optional[int] = 2048, |
|
expand_k: float = 1., |
|
expand_v: float = 1., |
|
num_heads: int = 4, |
|
num_kv_heads: Optional[int] = None, |
|
elementwise_affine: Optional[bool] = True, |
|
norm_first: bool = True, |
|
norm_eps: float = 1e-5, |
|
gate_logit_normalizer: int = 8, |
|
use_output_gate: bool = False, |
|
use_norm: bool = True, |
|
layer_idx: Optional[int] = None, |
|
scale: Optional[float] = 1., |
|
**kwargs |
|
) -> SemiCompressedAttention: |
|
super().__init__() |
|
|
|
self.mode = mode |
|
self.hidden_size = hidden_size |
|
self.window_size = window_size |
|
self.state_size = state_size |
|
self.gate_act = gate_act |
|
self.max_position_embeddings = max_position_embeddings |
|
self.expand_k = expand_k |
|
self.expand_v = expand_v |
|
self.num_heads = num_heads |
|
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads |
|
self.num_kv_groups = self.num_heads // self.num_kv_heads |
|
self.key_dim = int(hidden_size * expand_k) |
|
self.value_dim = int(hidden_size * expand_v) |
|
self.key_dim_per_group = self.key_dim // self.num_kv_groups |
|
self.value_dim_per_group = self.value_dim // self.num_kv_groups |
|
self.head_k_dim = self.key_dim // self.num_heads |
|
self.head_v_dim = self.value_dim // self.num_heads |
|
|
|
self.gate_logit_normalizer = gate_logit_normalizer |
|
|
|
self.use_output_gate = use_output_gate |
|
self.use_norm = use_norm |
|
self.scale = scale |
|
|
|
self.norm_first = norm_first |
|
|
|
self.layer_idx = layer_idx |
|
|
|
if layer_idx is None: |
|
warnings.warn( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
if norm_first: |
|
self.norm = RMSNorm(self.hidden_size, eps=norm_eps) |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.value_dim_per_group, bias=False) |
|
self.s_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False) |
|
self.g_proj = nn.Linear(self.hidden_size, self.num_heads * self.state_size, bias=False) |
|
|
|
self.norm = RMSNorm(self.hidden_size, elementwise_affine, eps=norm_eps) |
|
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False) |
|
|
|
self.apply(self._initialize_weights) |
|
|
|
self.register_buffer('alibi', build_alibi_tensor_scan(self.num_heads, self.max_position_embeddings, self.window_size, self.state_size)) |
|
self.register_buffer('mask', scores_mask(self.max_position_embeddings, self.window_size, self.state_size)) |
|
|
|
def _initialize_weights(self, module: nn.Module): |
|
if getattr(module, "_is_hf_initialized", False): |
|
return |
|
if isinstance(module, nn.Linear): |
|
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
module._is_hf_initialized = True |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
**kwargs |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: |
|
if attention_mask is not None: |
|
assert len(attention_mask.shape) == 2, ( |
|
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " |
|
"for padding purposes (0 indicating padding). " |
|
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." |
|
) |
|
|
|
|
|
mode = 'naive' if past_key_values is not None else self.mode |
|
|
|
if self.norm_first: |
|
hidden_states = self.norm(hidden_states) |
|
|
|
last_state = None |
|
if past_key_values is not None and len(past_key_values) > self.layer_idx: |
|
last_state = past_key_values[self.layer_idx] |
|
|
|
q = self.q_proj(hidden_states) |
|
k = self.k_proj(hidden_states) |
|
v = self.v_proj(hidden_states) |
|
s = self.s_proj(hidden_states) |
|
g = self.g_proj(hidden_states) |
|
|
|
if self.gate_act == 'softmax': |
|
g = F.softmax(g, dim=-1) |
|
elif self.gate_act == 'sigmoid': |
|
g = sigmoid(g) |
|
else: |
|
raise NotImplementedError(f"Gate activation `{self.gate_act}` is not supported.") |
|
|
|
|
|
if past_key_values is not None: |
|
k, v = past_key_values.update( |
|
attn_state=(k, v), |
|
layer_idx=self.layer_idx, |
|
offset=q.shape[2], |
|
|
|
cache_kwargs=dict(window_size=self.window_size) if q.shape[-2] == 1 else dict() |
|
)['attn_state'] |
|
|
|
recurrent_state = last_state['recurrent_state'] if last_state is not None else None |
|
if mode == 'parallel': |
|
|
|
q = rearrange(q, 'b t (h c) -> (b h) t c', h=self.num_heads) |
|
k = rearrange(k, 'b t (h c) -> (b h) t c', h=self.num_kv_heads) |
|
v = rearrange(v, 'b t (h c) -> (b h) t c', h=self.num_kv_heads) |
|
s = rearrange(s, 'b t (h c) -> (b h) t c', h=self.num_kv_heads) |
|
g = rearrange(g, 'b t (h s) -> (b h) t s', h=self.num_kv_heads) |
|
o, recurrent_state = parallel_scan( |
|
q=q, |
|
k=k, |
|
v=v, |
|
s=s, |
|
g=g, |
|
window_size=self.window_size, |
|
num_heads=self.num_heads, |
|
alibi=self.alibi.to(q.device), |
|
mask=self.mask.to(q.device), |
|
initial_state=recurrent_state, |
|
output_final_state=use_cache, |
|
scale=self.scale, |
|
head_first=False |
|
) |
|
o = rearrange(o, '(b h) t c -> b t (h c)', h=self.num_heads) |
|
elif mode == 'naive': |
|
|
|
q = rearrange(q, 'b t (h c) -> b h t c', h=self.num_heads) |
|
k = rearrange(k, 'b t (h c) -> b h t c', h=self.num_kv_heads) |
|
v = rearrange(v, 'b t (h c) -> b h t c', h=self.num_kv_heads) |
|
s = rearrange(s, 'b t (h c) -> b h t c', h=self.num_kv_heads) |
|
g = rearrange(g, 'b t (h s) -> b h t s', h=self.num_kv_heads) |
|
o, recurrent_state = naive_recurrent_scan( |
|
q=q, |
|
k=k, |
|
v=v, |
|
s=s, |
|
g=g, |
|
window_size=self.window_size, |
|
alibi=self.alibi.to(q.device), |
|
mask=self.mask.to(q.device), |
|
initial_state=recurrent_state, |
|
output_final_state=use_cache, |
|
scale=self.scale, |
|
head_first=False |
|
) |
|
o = rearrange(o, 'b h t c -> b t (h c)', h=self.num_heads) |
|
else: |
|
raise NotImplementedError(f"Not supported mode `{mode}`.") |
|
|
|
|
|
if past_key_values is not None: |
|
past_key_values.update( |
|
recurrent_state=recurrent_state, |
|
layer_idx=self.layer_idx |
|
) |
|
|
|
o = rms_norm_linear(swish(o), self.norm.weight, self.norm.bias, self.o_proj.weight, self.o_proj.bias) |
|
return o, None, past_key_values |
|
|