|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint |
|
from transformers.activations import ACT2FN |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_outputs import (BaseModelOutputWithPast, |
|
CausalLMOutputWithPast) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
from fla.layers.attn import Attention |
|
from fla.layers.gsa import GatedSlotAttention |
|
from fla.models.gsa.configuration_gsa import GSAConfig |
|
from fla.models.utils import Cache |
|
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss, |
|
RMSNorm) |
|
from fla.modules.activations import swiglu_linear |
|
from fla.modules.layernorm import rms_norm_linear |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class GSAMLP(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
hidden_ratio: Optional[int] = None, |
|
intermediate_size: Optional[int] = None, |
|
hidden_act: str = 'swish', |
|
norm_first: bool = True, |
|
norm_eps: float = 1e-5 |
|
) -> GSAMLP: |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
|
|
|
|
if hidden_ratio is None: |
|
hidden_ratio = 4 |
|
if intermediate_size is None: |
|
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3) |
|
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256) |
|
self.hidden_ratio = hidden_ratio |
|
self.intermediate_size = intermediate_size |
|
self.norm_first = norm_first |
|
|
|
if norm_first: |
|
self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps) |
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
if self.norm_first: |
|
x = rms_norm_linear(x, self.norm.weight, self.norm.bias, self.gate_proj.weight, self.gate_proj.bias) |
|
else: |
|
x = self.gate_proj(x) |
|
gate, y = x.chunk(2, -1) |
|
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias) |
|
|
|
|
|
class GSABlock(nn.Module): |
|
def __init__(self, config: GSAConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
if not config.norm_first: |
|
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps) |
|
if config.attn is not None and layer_idx in config.attn['layers']: |
|
self.attn = Attention( |
|
hidden_size=config.hidden_size, |
|
num_heads=config.attn['num_heads'], |
|
num_kv_heads=config.attn['num_kv_heads'], |
|
window_size=config.attn['window_size'], |
|
max_position_embeddings=config.max_position_embeddings, |
|
layer_idx=layer_idx |
|
) |
|
else: |
|
self.attn = GatedSlotAttention( |
|
hidden_size=config.hidden_size, |
|
expand_k=config.expand_k, |
|
expand_v=config.expand_v, |
|
num_heads=config.num_heads, |
|
num_kv_heads=config.num_kv_heads, |
|
num_slots=config.num_slots, |
|
use_short_conv=config.use_short_conv, |
|
conv_size=config.conv_size, |
|
feature_map=config.feature_map, |
|
use_output_gate=config.use_output_gate, |
|
use_norm=config.use_norm, |
|
gate_fn=config.hidden_act, |
|
gate_logit_normalizer=config.gate_logit_normalizer, |
|
elementwise_affine=config.elementwise_affine, |
|
norm_first=config.norm_first, |
|
norm_eps=config.norm_eps, |
|
fuse_norm=config.fuse_norm, |
|
layer_idx=layer_idx |
|
) |
|
if not config.norm_first: |
|
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps) |
|
self.mlp = GSAMLP( |
|
hidden_size=config.hidden_size, |
|
hidden_ratio=config.hidden_ratio, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
norm_first=config.norm_first, |
|
norm_eps=config.norm_eps |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
**kwargs |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
|
residual = hidden_states |
|
if hasattr(self, 'attn_norm'): |
|
hidden_states = self.attn_norm(hidden_states) |
|
hidden_states, attentions, past_key_values = self.attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions |
|
) |
|
if hasattr(self, 'mlp_norm'): |
|
hidden_states, residual = self.mlp_norm(hidden_states, residual, True) |
|
else: |
|
hidden_states = residual + hidden_states |
|
residual = hidden_states |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states, attentions, past_key_values) |
|
|
|
return outputs |
|
|
|
|
|
class GSAPreTrainedModel(PreTrainedModel): |
|
|
|
config_class = GSAConfig |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ['GSABlock'] |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights( |
|
self, |
|
module: nn.Module, |
|
rescale_prenorm_residual: bool = True, |
|
num_residuals_per_layer: int = 2, |
|
): |
|
if isinstance(module, (nn.Linear, nn.Conv1d)): |
|
|
|
|
|
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
if rescale_prenorm_residual: |
|
|
|
|
|
|
|
|
|
|
|
|
|
for name, p in module.named_parameters(): |
|
if name in ["o_proj.weight", "down_proj.weight"]: |
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers) |
|
|
|
|
|
class GSAModel(GSAPreTrainedModel): |
|
|
|
def __init__(self, config: GSAConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([GSABlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings = value |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
if output_attentions: |
|
warnings.warn("`GSAModel` does not `output_attentions` now, setting it to `False`.") |
|
output_attentions = False |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
if input_ids is None and inputs_embeds is None: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embeddings(input_ids) |
|
hidden_states = inputs_embeds |
|
|
|
if use_cache and not isinstance(past_key_values, Cache): |
|
past_key_values = Cache.from_legacy_cache(past_key_values) |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...") |
|
use_cache = False |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_attns = () if output_attentions else None |
|
|
|
for i, layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func( |
|
layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
past_key_values, |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
hidden_states, attentions, past_key_values = layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions |
|
) |
|
|
|
if output_attentions: |
|
all_attns += (attentions,) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attns |
|
) |
|
|
|
|
|
class GSAForCausalLM(GSAPreTrainedModel, GenerationMixin): |
|
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
|
|
super().__init__(config) |
|
self.model = GSAModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embeddings = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def generate(self, *args, **kwargs): |
|
try: |
|
return super().generate(*args, **kwargs) |
|
except AttributeError as exception: |
|
if 'past_key_values' in str(exception): |
|
raise AttributeError( |
|
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, " |
|
f"which is not supported for {self.__class__.__name__}. " |
|
f"Try another generation strategy instead. " |
|
f"For the available generation strategies, check this doc: " |
|
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies" |
|
) |
|
else: |
|
raise exception |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: bool = True, |
|
num_logits_to_keep: Optional[int] = None, |
|
**kwargs |
|
): |
|
|
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {'inputs_embeds': inputs_embeds} |
|
else: |
|
|
|
|
|
|
|
|
|
model_inputs = {'input_ids': input_ids.contiguous()} |
|
|
|
if num_logits_to_keep is not None: |
|
model_inputs['num_logits_to_keep'] = num_logits_to_keep |
|
|
|
model_inputs.update({ |
|
'past_key_values': past_key_values, |
|
'use_cache': use_cache, |
|
'attention_mask': attention_mask, |
|
'num_logits_to_keep': num_logits_to_keep, |
|
}) |
|
return model_inputs |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
num_logits_to_keep: Optional[int] = 0 |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
hidden_states = outputs[0] |
|
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training |
|
logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -num_logits_to_keep:]) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.fuse_cross_entropy: |
|
if fuse_linear_and_cross_entropy: |
|
loss_fct = FusedLinearCrossEntropyLoss() |
|
else: |
|
loss_fct = FusedCrossEntropyLoss(inplace_backward=True) |
|
else: |
|
loss_fct = nn.CrossEntropyLoss() |
|
|
|
labels = labels.to(hidden_states.device) |
|
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1) |
|
if fuse_linear_and_cross_entropy: |
|
loss = loss_fct(hidden_states.view(-1, self.config.hidden_size), |
|
labels.view(-1), |
|
self.lm_head.weight, |
|
self.lm_head.bias) |
|
else: |
|
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|