scan-8192-16M-test / fla /models /gsa /modeling_gsa.py
zaydzuhri's picture
Training in progress, step 5000
a0806ea verified
raw
history blame
18.5 kB
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.attn import Attention
from fla.layers.gsa import GatedSlotAttention
from fla.models.gsa.configuration_gsa import GSAConfig
from fla.models.utils import Cache
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
RMSNorm)
from fla.modules.activations import swiglu_linear
from fla.modules.layernorm import rms_norm_linear
logger = logging.get_logger(__name__)
class GSAMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish',
norm_first: bool = True,
norm_eps: float = 1e-5
) -> GSAMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.norm_first = norm_first
if norm_first:
self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps)
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
if self.norm_first:
x = rms_norm_linear(x, self.norm.weight, self.norm.bias, self.gate_proj.weight, self.gate_proj.bias)
else:
x = self.gate_proj(x)
gate, y = x.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class GSABlock(nn.Module):
def __init__(self, config: GSAConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
if not config.norm_first:
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
if config.attn is not None and layer_idx in config.attn['layers']:
self.attn = Attention(
hidden_size=config.hidden_size,
num_heads=config.attn['num_heads'],
num_kv_heads=config.attn['num_kv_heads'],
window_size=config.attn['window_size'],
max_position_embeddings=config.max_position_embeddings,
layer_idx=layer_idx
)
else:
self.attn = GatedSlotAttention(
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
num_kv_heads=config.num_kv_heads,
num_slots=config.num_slots,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
feature_map=config.feature_map,
use_output_gate=config.use_output_gate,
use_norm=config.use_norm,
gate_fn=config.hidden_act,
gate_logit_normalizer=config.gate_logit_normalizer,
elementwise_affine=config.elementwise_affine,
norm_first=config.norm_first,
norm_eps=config.norm_eps,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
if not config.norm_first:
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = GSAMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
norm_first=config.norm_first,
norm_eps=config.norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
if hasattr(self, 'attn_norm'):
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if hasattr(self, 'mlp_norm'):
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
else:
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class GSAPreTrainedModel(PreTrainedModel):
config_class = GSAConfig
supports_gradient_checkpointing = True
_no_split_modules = ['GSABlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class GSAModel(GSAPreTrainedModel):
def __init__(self, config: GSAConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([GSABlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`GSAModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
if input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache and not isinstance(past_key_values, Cache):
past_key_values = Cache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions,
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_attns
)
class GSAForCausalLM(GSAPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = GSAModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: bool = True,
num_logits_to_keep: Optional[int] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
if num_logits_to_keep is not None:
model_inputs['num_logits_to_keep'] = num_logits_to_keep
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': use_cache,
'attention_mask': attention_mask,
'num_logits_to_keep': num_logits_to_keep,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
num_logits_to_keep: Optional[int] = 0
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -num_logits_to_keep:])
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
if fuse_linear_and_cross_entropy:
loss_fct = FusedLinearCrossEntropyLoss()
else:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(hidden_states.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
if fuse_linear_and_cross_entropy:
loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
labels.view(-1),
self.lm_head.weight,
self.lm_head.bias)
else:
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)