# -*- coding: utf-8 -*- | |
import torch | |
def naive_retention(q, k, v): | |
orig_type = q.dtype | |
q, k, v = q.float(), k.float(), v.float() | |
_, n_heads, seq_len, d_head = q.shape | |
s = (1 - q.new_tensor(2., dtype=torch.float).pow(-5. - q.new_tensor(range(n_heads), dtype=torch.float))).log2() | |
n = q.new_tensor(range(seq_len), dtype=torch.float) | |
n = torch.exp2((n.unsqueeze(-1) - n) * s.view(-1, 1, 1)) * n.unsqueeze(-1).ge(n) | |
s = torch.einsum('bhqd,bhkd,hqk->bhqk', q * d_head ** -0.5, k, n.to(q.dtype)) | |
o = torch.einsum('bhqk,bhkd->bhqd', s, v) | |
return o.to(orig_type) | |