Model save
Browse files- README.md +54 -165
- generation_config.json +6 -0
README.md
CHANGED
@@ -1,165 +1,54 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
Given the size of the dataset, the fastest way to download it is using `git lfs` (refer to [this issue](https://huggingface.co/datasets/cerebras/SlimPajama-627B/discussions/2)).
|
56 |
-
```bash
|
57 |
-
git lfs install
|
58 |
-
git clone https://huggingface.co/datasets/cerebras/SlimPajama-627B
|
59 |
-
python preprocess.py \
|
60 |
-
--dataset SlimPajama-627B \
|
61 |
-
--split train \
|
62 |
-
--context_length 2048
|
63 |
-
```
|
64 |
-
|
65 |
-
## Training from scratch
|
66 |
-
|
67 |
-
To train your 340M model from scratch, execute the following command:
|
68 |
-
|
69 |
-
```bash
|
70 |
-
bash train.sh \
|
71 |
-
type=gla \
|
72 |
-
lr=3e-4 \
|
73 |
-
steps=20480 \
|
74 |
-
batch=8 \
|
75 |
-
update=1 \
|
76 |
-
warmup=1024 \
|
77 |
-
context=2048 \
|
78 |
-
path=exp/gla-340M-10B \
|
79 |
-
project=fla \
|
80 |
-
model=configs/gla_340M.json \
|
81 |
-
data=HuggingFaceFW/fineweb-edu \
|
82 |
-
name=sample-10BT \
|
83 |
-
cache=data/HuggingFaceFW/fineweb-edu/sample-10BT/train
|
84 |
-
```
|
85 |
-
or for testing SCAN:
|
86 |
-
```bash
|
87 |
-
bash train.sh \
|
88 |
-
type=scan \
|
89 |
-
lr=3e-4 \
|
90 |
-
steps=1000 \
|
91 |
-
batch=8 \
|
92 |
-
update=1 \
|
93 |
-
warmup=100 \
|
94 |
-
context=2048 \
|
95 |
-
path=exp/scan-340M-test \
|
96 |
-
project=fla \
|
97 |
-
model=configs/scan_340M.json \
|
98 |
-
data=alturing/gutenberg-texts \
|
99 |
-
name=sample-10BT \
|
100 |
-
cache=data/alturing/gutenberg-texts/train
|
101 |
-
```
|
102 |
-
|
103 |
-
`flame` also supports resuming interrupted training by specifying the checkpoint path.
|
104 |
-
Simply use the following command to resume training:
|
105 |
-
|
106 |
-
```bash
|
107 |
-
bash train.sh \
|
108 |
-
type=gla \
|
109 |
-
lr=3e-4 \
|
110 |
-
steps=20480 \
|
111 |
-
batch=8 \
|
112 |
-
update=1 \
|
113 |
-
warmup=1024 \
|
114 |
-
context=2048 \
|
115 |
-
path=exp/gla-340M-10B \
|
116 |
-
project=fla \
|
117 |
-
model=configs/gla_340M.json \
|
118 |
-
data=HuggingFaceFW/fineweb-edu \
|
119 |
-
name=sample-10BT \
|
120 |
-
cache=data/HuggingFaceFW/fineweb-edu/sample-10BT/train \
|
121 |
-
checkpoint=exp/gla-340M-10B/checkpoint-8192
|
122 |
-
```
|
123 |
-
|
124 |
-
You can also use `wandb` to monitor your training process effectively.
|
125 |
-
|
126 |
-
![wandb](https://github.com/user-attachments/assets/05ca031c-1cae-41c9-bfcb-5b6b6d0df729)
|
127 |
-
|
128 |
-
## Continual Pretraining
|
129 |
-
|
130 |
-
`flame` supports continual training from a pretrained checkpoint.
|
131 |
-
Below, we provide an example of how to finetune Mistral-7B to GLA.
|
132 |
-
You can follow similar steps to reproduce the results in the [GSA paper](https://arxiv.org/abs/2409.07146):
|
133 |
-
|
134 |
-
1. Initialize a brand-new GLA-7B model from the config and copy the mathced pretrained weights from Mistral-7B:
|
135 |
-
```bash
|
136 |
-
cd ../utils
|
137 |
-
python convert_from_llama.py \
|
138 |
-
--model mistralai/Mistral-7B-v0.1 \
|
139 |
-
--config ../training/configs/gla_7B.json \
|
140 |
-
--output ../training/converted/gla-7B
|
141 |
-
cd -
|
142 |
-
```
|
143 |
-
|
144 |
-
2. Directly launch training from the converted checkpoint:
|
145 |
-
```bash
|
146 |
-
bash train.sh \
|
147 |
-
type=gla \
|
148 |
-
lr=3e-5 \
|
149 |
-
steps=10240 \
|
150 |
-
batch=4 \
|
151 |
-
update=8 \
|
152 |
-
warmup=512 \
|
153 |
-
context=2048 \
|
154 |
-
path=exp/gla-7B-20B \
|
155 |
-
project=fla \
|
156 |
-
model=converted/gla-7B \
|
157 |
-
data=SlimPajama-627B \
|
158 |
-
cache=data/SlimPajama-627B/train
|
159 |
-
```
|
160 |
-
|
161 |
-
Please be aware that finetuning on a single node may not be the most efficient approach.
|
162 |
-
If available, consider leveraging multi-node GPUs for optimal performance.
|
163 |
-
You can find guidance on how to launch a multi-node job in the [accelerate tutorial](https://github.com/huggingface/accelerate/blob/main/examples/slurm/submit_multinode.sh).
|
164 |
-
|
165 |
-
[^1]: The `accelerate` library supports various distributed frameworks, like `deepspeed` and `megatron` for large-scale training. We use `deepspeed` in our case.
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: configs/gsa_16M.json
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: gsa-16M-test
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# gsa-16M-test
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [configs/gsa_16M.json](https://huggingface.co/configs/gsa_16M.json) on an unknown dataset.
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 0.0003
|
36 |
+
- train_batch_size: 8
|
37 |
+
- eval_batch_size: 8
|
38 |
+
- seed: 42
|
39 |
+
- distributed_type: multi-GPU
|
40 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
41 |
+
- lr_scheduler_type: cosine_with_min_lr
|
42 |
+
- lr_scheduler_warmup_steps: 200
|
43 |
+
- training_steps: 5000
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
### Framework versions
|
50 |
+
|
51 |
+
- Transformers 4.47.0
|
52 |
+
- Pytorch 2.5.1+cu124
|
53 |
+
- Datasets 3.2.0
|
54 |
+
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.47.0"
|
6 |
+
}
|