|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from typing import TYPE_CHECKING, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
|
|
from fla.modules import GroupNorm |
|
from fla.modules.activations import ACT2FN |
|
from fla.ops.rwkv6 import chunk_rwkv6, fused_recurrent_rwkv6 |
|
|
|
if TYPE_CHECKING: |
|
from fla.models.utils import Cache |
|
|
|
|
|
class RWKV6Attention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
mode: str = 'chunk', |
|
hidden_size: int = 1024, |
|
expand_k: float = 0.5, |
|
expand_v: float = 1.0, |
|
num_heads: int = 4, |
|
gate_fn: str = 'swish', |
|
proj_low_rank_dim: int = 32, |
|
gate_low_rank_dim: int = 64, |
|
fuse_norm: bool = True, |
|
elementwise_affine: Optional[bool] = True, |
|
norm_eps: float = 1e-5, |
|
layer_idx: int = None, |
|
**kwargs |
|
) -> RWKV6Attention: |
|
super().__init__() |
|
|
|
self.mode = mode |
|
self.hidden_size = hidden_size |
|
self.expand_k = expand_k |
|
self.expand_v = expand_v |
|
self.num_heads = num_heads |
|
self.proj_low_rank_dim = proj_low_rank_dim |
|
self.gate_low_rank_dim = gate_low_rank_dim |
|
|
|
self.key_dim = int(hidden_size * expand_k) |
|
self.value_dim = int(hidden_size * expand_v) |
|
self.layer_idx = layer_idx |
|
|
|
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`." |
|
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}" |
|
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}" |
|
|
|
self.head_qk_dim = self.key_dim // num_heads |
|
self.head_v_dim = self.value_dim // num_heads |
|
|
|
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) |
|
self.x_proj = nn.Sequential( |
|
LerpLinear(hidden_size, proj_low_rank_dim * 5), |
|
nn.Tanh(), |
|
nn.Linear(proj_low_rank_dim * 5, hidden_size, bias=False) |
|
) |
|
self.x_bias = nn.Parameter(torch.zeros(5, hidden_size)) |
|
|
|
self.r_proj = DDLerpLinear(hidden_size, self.key_dim) |
|
self.w_proj = DDLerpLinear(hidden_size, self.key_dim, low_rank_dim=gate_low_rank_dim) |
|
self.k_proj = DDLerpLinear(hidden_size, self.key_dim) |
|
self.v_proj = DDLerpLinear(hidden_size, self.value_dim) |
|
self.g_proj = DDLerpLinear(hidden_size, self.value_dim) |
|
self.bonus = nn.Parameter(torch.zeros(num_heads, self.head_qk_dim)) |
|
|
|
|
|
self.g_norm = GroupNorm(self.num_heads, self.value_dim, elementwise_affine=elementwise_affine, bias=True, eps=norm_eps) |
|
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False) |
|
self.gate_fn = ACT2FN[gate_fn] |
|
|
|
self.apply(self._initialize_weights) |
|
|
|
def _initialize_weights(self, module: nn.Module): |
|
if getattr(module, "_is_hf_initialized", False): |
|
return |
|
if isinstance(module, nn.Linear): |
|
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
if isinstance(module, nn.Parameter): |
|
nn.init.xavier_uniform_(module, gain=2 ** -2.5) |
|
module._is_hf_initialized = True |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
**kwargs |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: |
|
if attention_mask is not None: |
|
assert len(attention_mask.shape) == 2, ( |
|
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " |
|
"for padding purposes (0 indicating padding). " |
|
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." |
|
) |
|
|
|
batch_size, seq_len, hidden_size = hidden_states.shape |
|
|
|
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode |
|
|
|
last_state = None |
|
if past_key_values is not None and len(past_key_values) > self.layer_idx: |
|
last_state = past_key_values[self.layer_idx] |
|
|
|
if attention_mask is not None: |
|
hidden_states = hidden_states.mul_(attention_mask[:, -hidden_states.shape[-2]:, None]) |
|
if hidden_states.shape[1] == 1 and last_state is not None: |
|
shifted = last_state['conv_state'].unsqueeze(1) |
|
else: |
|
shifted = self.time_shift(hidden_states) |
|
if last_state is not None: |
|
shifted[:, 0] = last_state['conv_state'][0] |
|
|
|
delta = shifted - hidden_states |
|
x = self.x_proj[0](hidden_states, delta).view(batch_size, seq_len, -1, self.proj_low_rank_dim) |
|
x = torch.einsum('b t n r, h n r-> b t n h', self.x_proj[1](x), self.x_proj[2].weight.view(hidden_size, 5, -1)) |
|
|
|
r, w, k, v, g = x.add_(self.x_bias).unbind(-2) |
|
r = self.r_proj(hidden_states, r, delta) |
|
w = self.w_proj(hidden_states, w, delta) |
|
k = self.k_proj(hidden_states, k, delta) |
|
v = self.v_proj(hidden_states, v, delta) |
|
g = self.g_proj(hidden_states, g, delta) |
|
|
|
|
|
if attention_mask is not None: |
|
v = v.mul_(attention_mask[:, -v.shape[-2]:, None]) |
|
r, w, k, v = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', h=self.num_heads), (r, w, k, v)) |
|
w = -torch.exp(w) |
|
u = self.bonus |
|
|
|
recurrent_state = last_state['recurrent_state'] if last_state is not None else None |
|
if mode == 'fused_recurrent': |
|
o, recurrent_state = fused_recurrent_rwkv6( |
|
r=r, |
|
k=k, |
|
v=v, |
|
w=w, |
|
u=u, |
|
scale=1., |
|
initial_state=recurrent_state, |
|
output_final_state=use_cache, |
|
head_first=False |
|
) |
|
elif mode == 'chunk': |
|
o, recurrent_state = chunk_rwkv6( |
|
q=r, |
|
k=k, |
|
v=v, |
|
g=w, |
|
u=u, |
|
scale=1., |
|
initial_state=recurrent_state, |
|
output_final_state=use_cache, |
|
head_first=False |
|
) |
|
else: |
|
raise NotImplementedError(f"Not supported mode `{mode}`.") |
|
|
|
if past_key_values is not None: |
|
past_key_values.update( |
|
recurrent_state=recurrent_state, |
|
conv_state=hidden_states[:, -1], |
|
layer_idx=self.layer_idx, |
|
offset=r.shape[2] |
|
) |
|
|
|
o = self.g_norm(rearrange(o, '... h d -> ... (h d)')) * self.gate_fn(g) |
|
o = self.o_proj(o) |
|
|
|
return o, None, past_key_values |
|
|
|
|
|
class LoRA(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
input_dim: int, |
|
output_dim: int, |
|
low_rank_dim: int, |
|
bias: Optional[bool] = True |
|
): |
|
super().__init__() |
|
|
|
self.input_dim = input_dim |
|
self.output_dim = output_dim |
|
self.low_rank_dim = low_rank_dim |
|
self.bias = bias |
|
|
|
self.lora = nn.Sequential( |
|
nn.Linear(input_dim, low_rank_dim, bias=False), |
|
nn.Tanh(), |
|
nn.Linear(low_rank_dim, output_dim, bias=bias) |
|
) |
|
|
|
def __repr__(self) -> str: |
|
s = f"{self.__class__.__name__}(" |
|
s += f"input_dim={self.input_dim}, low_rank_dim={self.low_rank_dim}, output_dim={self.output_dim}" |
|
if not self.bias: |
|
s += f", bias={self.bias}" |
|
s += ")" |
|
return s |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.lora(x) |
|
|
|
|
|
class LerpLinear(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
input_dim: int, |
|
output_dim: int, |
|
low_rank_dim: Optional[int] = None |
|
): |
|
super().__init__() |
|
|
|
self.input_dim = input_dim |
|
self.output_dim = output_dim |
|
self.low_rank_dim = low_rank_dim |
|
|
|
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) |
|
if low_rank_dim is None: |
|
self.linear = nn.Linear(input_dim, output_dim, bias=False) |
|
else: |
|
self.linear = LoRA(input_dim, output_dim, low_rank_dim) |
|
self.mu = nn.Parameter(torch.zeros(input_dim)) |
|
|
|
def __repr__(self) -> str: |
|
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}" |
|
if self.low_rank_dim is not None: |
|
s += f", low_rank_dim={self.low_rank_dim}" |
|
s += ")" |
|
return s |
|
|
|
def forward(self, x: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
if delta is None: |
|
shifted = self.time_shift(x) |
|
if len(shifted.shape) == 2: |
|
shifted = shifted.unsqueeze(1) |
|
delta = shifted - x |
|
return self.linear(x + delta * self.mu) |
|
|
|
|
|
class DDLerpLinear(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
input_dim: int, |
|
output_dim: int, |
|
low_rank_dim: Optional[int] = None |
|
): |
|
super().__init__() |
|
|
|
self.input_dim = input_dim |
|
self.output_dim = output_dim |
|
self.low_rank_dim = low_rank_dim |
|
|
|
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) |
|
if low_rank_dim is None: |
|
self.linear = nn.Linear(input_dim, output_dim, bias=False) |
|
else: |
|
self.linear = LoRA(input_dim, output_dim, low_rank_dim) |
|
|
|
def __repr__(self) -> str: |
|
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}" |
|
if self.low_rank_dim is not None: |
|
s += f", low_rank_dim={self.low_rank_dim}" |
|
s += ")" |
|
return s |
|
|
|
def forward(self, x: torch.Tensor, mu: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
if delta is None: |
|
shifted = self.time_shift(x) |
|
if len(shifted.shape) == 2: |
|
shifted = shifted.unsqueeze(1) |
|
delta = shifted - x |
|
return self.linear(x + delta * mu) |
|
|