Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/zanelim/singbert-large-sg/README.md
README.md
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- singapore
|
5 |
+
- sg
|
6 |
+
- singlish
|
7 |
+
- malaysia
|
8 |
+
- ms
|
9 |
+
- manglish
|
10 |
+
- bert-large-uncased
|
11 |
+
license: mit
|
12 |
+
datasets:
|
13 |
+
- reddit singapore, malaysia
|
14 |
+
- hardwarezone
|
15 |
+
widget:
|
16 |
+
- text: "kopi c siew [MASK]"
|
17 |
+
- text: "die [MASK] must try"
|
18 |
+
---
|
19 |
+
|
20 |
+
# Model name
|
21 |
+
|
22 |
+
SingBert Large - Bert for Singlish (SG) and Manglish (MY).
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
Similar to [SingBert](https://huggingface.co/zanelim/singbert) but the large version, which was initialized from [BERT large uncased (whole word masking)](https://github.com/google-research/bert#pre-trained-models), with pre-training finetuned on
|
27 |
+
[singlish](https://en.wikipedia.org/wiki/Singlish) and [manglish](https://en.wikipedia.org/wiki/Manglish) data.
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
#### How to use
|
32 |
+
|
33 |
+
```python
|
34 |
+
>>> from transformers import pipeline
|
35 |
+
>>> nlp = pipeline('fill-mask', model='zanelim/singbert-large-sg')
|
36 |
+
>>> nlp("kopi c siew [MASK]")
|
37 |
+
|
38 |
+
[{'sequence': '[CLS] kopi c siew dai [SEP]',
|
39 |
+
'score': 0.9003700017929077,
|
40 |
+
'token': 18765,
|
41 |
+
'token_str': 'dai'},
|
42 |
+
{'sequence': '[CLS] kopi c siew mai [SEP]',
|
43 |
+
'score': 0.0779474675655365,
|
44 |
+
'token': 14736,
|
45 |
+
'token_str': 'mai'},
|
46 |
+
{'sequence': '[CLS] kopi c siew. [SEP]',
|
47 |
+
'score': 0.0032227332703769207,
|
48 |
+
'token': 1012,
|
49 |
+
'token_str': '.'},
|
50 |
+
{'sequence': '[CLS] kopi c siew bao [SEP]',
|
51 |
+
'score': 0.0017727474914863706,
|
52 |
+
'token': 25945,
|
53 |
+
'token_str': 'bao'},
|
54 |
+
{'sequence': '[CLS] kopi c siew peng [SEP]',
|
55 |
+
'score': 0.0012526646023616195,
|
56 |
+
'token': 26473,
|
57 |
+
'token_str': 'peng'}]
|
58 |
+
|
59 |
+
>>> nlp("one teh c siew dai, and one kopi [MASK]")
|
60 |
+
|
61 |
+
[{'sequence': '[CLS] one teh c siew dai, and one kopi. [SEP]',
|
62 |
+
'score': 0.5249741077423096,
|
63 |
+
'token': 1012,
|
64 |
+
'token_str': '.'},
|
65 |
+
{'sequence': '[CLS] one teh c siew dai, and one kopi o [SEP]',
|
66 |
+
'score': 0.27349168062210083,
|
67 |
+
'token': 1051,
|
68 |
+
'token_str': 'o'},
|
69 |
+
{'sequence': '[CLS] one teh c siew dai, and one kopi peng [SEP]',
|
70 |
+
'score': 0.057190295308828354,
|
71 |
+
'token': 26473,
|
72 |
+
'token_str': 'peng'},
|
73 |
+
{'sequence': '[CLS] one teh c siew dai, and one kopi c [SEP]',
|
74 |
+
'score': 0.04022320732474327,
|
75 |
+
'token': 1039,
|
76 |
+
'token_str': 'c'},
|
77 |
+
{'sequence': '[CLS] one teh c siew dai, and one kopi? [SEP]',
|
78 |
+
'score': 0.01191170234233141,
|
79 |
+
'token': 1029,
|
80 |
+
'token_str': '?'}]
|
81 |
+
|
82 |
+
>>> nlp("die [MASK] must try")
|
83 |
+
|
84 |
+
[{'sequence': '[CLS] die die must try [SEP]',
|
85 |
+
'score': 0.9921030402183533,
|
86 |
+
'token': 3280,
|
87 |
+
'token_str': 'die'},
|
88 |
+
{'sequence': '[CLS] die also must try [SEP]',
|
89 |
+
'score': 0.004993876442313194,
|
90 |
+
'token': 2036,
|
91 |
+
'token_str': 'also'},
|
92 |
+
{'sequence': '[CLS] die liao must try [SEP]',
|
93 |
+
'score': 0.000317625846946612,
|
94 |
+
'token': 727,
|
95 |
+
'token_str': 'liao'},
|
96 |
+
{'sequence': '[CLS] die still must try [SEP]',
|
97 |
+
'score': 0.0002260878391098231,
|
98 |
+
'token': 2145,
|
99 |
+
'token_str': 'still'},
|
100 |
+
{'sequence': '[CLS] die i must try [SEP]',
|
101 |
+
'score': 0.00016935862367972732,
|
102 |
+
'token': 1045,
|
103 |
+
'token_str': 'i'}]
|
104 |
+
|
105 |
+
>>> nlp("dont play [MASK] leh")
|
106 |
+
|
107 |
+
[{'sequence': '[CLS] dont play play leh [SEP]',
|
108 |
+
'score': 0.9079819321632385,
|
109 |
+
'token': 2377,
|
110 |
+
'token_str': 'play'},
|
111 |
+
{'sequence': '[CLS] dont play punk leh [SEP]',
|
112 |
+
'score': 0.006846973206847906,
|
113 |
+
'token': 7196,
|
114 |
+
'token_str': 'punk'},
|
115 |
+
{'sequence': '[CLS] dont play games leh [SEP]',
|
116 |
+
'score': 0.004041737411171198,
|
117 |
+
'token': 2399,
|
118 |
+
'token_str': 'games'},
|
119 |
+
{'sequence': '[CLS] dont play politics leh [SEP]',
|
120 |
+
'score': 0.003728888463228941,
|
121 |
+
'token': 4331,
|
122 |
+
'token_str': 'politics'},
|
123 |
+
{'sequence': '[CLS] dont play cheat leh [SEP]',
|
124 |
+
'score': 0.0032805048394948244,
|
125 |
+
'token': 21910,
|
126 |
+
'token_str': 'cheat'}]
|
127 |
+
|
128 |
+
>>> nlp("confirm plus [MASK]")
|
129 |
+
|
130 |
+
{'sequence': '[CLS] confirm plus chop [SEP]',
|
131 |
+
'score': 0.9749826192855835,
|
132 |
+
'token': 24494,
|
133 |
+
'token_str': 'chop'},
|
134 |
+
{'sequence': '[CLS] confirm plus chopped [SEP]',
|
135 |
+
'score': 0.017554156482219696,
|
136 |
+
'token': 24881,
|
137 |
+
'token_str': 'chopped'},
|
138 |
+
{'sequence': '[CLS] confirm plus minus [SEP]',
|
139 |
+
'score': 0.002725469646975398,
|
140 |
+
'token': 15718,
|
141 |
+
'token_str': 'minus'},
|
142 |
+
{'sequence': '[CLS] confirm plus guarantee [SEP]',
|
143 |
+
'score': 0.000900257145985961,
|
144 |
+
'token': 11302,
|
145 |
+
'token_str': 'guarantee'},
|
146 |
+
{'sequence': '[CLS] confirm plus one [SEP]',
|
147 |
+
'score': 0.0004384620988275856,
|
148 |
+
'token': 2028,
|
149 |
+
'token_str': 'one'}]
|
150 |
+
|
151 |
+
>>> nlp("catch no [MASK]")
|
152 |
+
|
153 |
+
[{'sequence': '[CLS] catch no ball [SEP]',
|
154 |
+
'score': 0.9381157159805298,
|
155 |
+
'token': 3608,
|
156 |
+
'token_str': 'ball'},
|
157 |
+
{'sequence': '[CLS] catch no balls [SEP]',
|
158 |
+
'score': 0.060842301696538925,
|
159 |
+
'token': 7395,
|
160 |
+
'token_str': 'balls'},
|
161 |
+
{'sequence': '[CLS] catch no fish [SEP]',
|
162 |
+
'score': 0.00030917322146706283,
|
163 |
+
'token': 3869,
|
164 |
+
'token_str': 'fish'},
|
165 |
+
{'sequence': '[CLS] catch no breath [SEP]',
|
166 |
+
'score': 7.552534952992573e-05,
|
167 |
+
'token': 3052,
|
168 |
+
'token_str': 'breath'},
|
169 |
+
{'sequence': '[CLS] catch no tail [SEP]',
|
170 |
+
'score': 4.208395694149658e-05,
|
171 |
+
'token': 5725,
|
172 |
+
'token_str': 'tail'}]
|
173 |
+
|
174 |
+
```
|
175 |
+
|
176 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
177 |
+
```python
|
178 |
+
from transformers import BertTokenizer, BertModel
|
179 |
+
tokenizer = BertTokenizer.from_pretrained('zanelim/singbert-large-sg')
|
180 |
+
model = BertModel.from_pretrained("zanelim/singbert-large-sg")
|
181 |
+
text = "Replace me by any text you'd like."
|
182 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
183 |
+
output = model(**encoded_input)
|
184 |
+
```
|
185 |
+
|
186 |
+
and in TensorFlow:
|
187 |
+
```python
|
188 |
+
from transformers import BertTokenizer, TFBertModel
|
189 |
+
tokenizer = BertTokenizer.from_pretrained("zanelim/singbert-large-sg")
|
190 |
+
model = TFBertModel.from_pretrained("zanelim/singbert-large-sg")
|
191 |
+
text = "Replace me by any text you'd like."
|
192 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
193 |
+
output = model(encoded_input)
|
194 |
+
```
|
195 |
+
|
196 |
+
#### Limitations and bias
|
197 |
+
This model was finetuned on colloquial Singlish and Manglish corpus, hence it is best applied on downstream tasks involving the main
|
198 |
+
constituent languages- english, mandarin, malay. Also, as the training data is mainly from forums, beware of existing inherent bias.
|
199 |
+
|
200 |
+
## Training data
|
201 |
+
Colloquial singlish and manglish (both are a mixture of English, Mandarin, Tamil, Malay, and other local dialects like Hokkien, Cantonese or Teochew)
|
202 |
+
corpus. The corpus is collected from subreddits- `r/singapore` and `r/malaysia`, and forums such as `hardwarezone`.
|
203 |
+
|
204 |
+
## Training procedure
|
205 |
+
|
206 |
+
Initialized with [bert large uncased (whole word masking)](https://github.com/google-research/bert#pre-trained-models) vocab and checkpoints (pre-trained weights).
|
207 |
+
Top 1000 custom vocab tokens (non-overlapped with original bert vocab) were further extracted from training data and filled into unused tokens in original bert vocab.
|
208 |
+
|
209 |
+
Pre-training was further finetuned on training data with the following hyperparameters
|
210 |
+
* train_batch_size: 512
|
211 |
+
* max_seq_length: 128
|
212 |
+
* num_train_steps: 300000
|
213 |
+
* num_warmup_steps: 5000
|
214 |
+
* learning_rate: 2e-5
|
215 |
+
* hardware: TPU v3-8
|