zainulhakim's picture
240624-wav2vec2-ASR-Arab
e3010c3 verified
|
raw
history blame
12.2 kB
metadata
license: apache-2.0
base_model: zainulhakim/240615-wav2vec2-ASR-Arabs
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: 240624-wav2vec2-ASR-Arab
    results: []

Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases

240624-wav2vec2-ASR-Arab

This model is a fine-tuned version of zainulhakim/240615-wav2vec2-ASR-Arabs on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6706
  • Wer: 0.9697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 5
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 6.25 100 2.5459 1.0
No log 12.5 200 1.4102 1.0
No log 18.75 300 1.6706 0.9697

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1