zagibest's picture
End of training
46b1970 verified
metadata
language:
  - mn
license: apache-2.0
base_model: zagibest/whisper-small-custom-data
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small MN with custom data + Common voice + Google Fluers - Zagi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: mn_mn
          split: None
          args: 'config: mn, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 34.56211146253681

Whisper Small MN with custom data + Common voice + Google Fluers - Zagi

This model is a fine-tuned version of zagibest/whisper-small-custom-data on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5343
  • Wer: 34.5621

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1792 2.59 500 0.4204 38.2103
0.0121 5.18 1000 0.4673 36.5634
0.0034 7.77 1500 0.4964 35.6309
0.0009 10.36 2000 0.5044 34.7366
0.0007 12.95 2500 0.5166 34.7366
0.0004 15.54 3000 0.5271 34.5785
0.0003 18.13 3500 0.5323 34.5948
0.0003 20.73 4000 0.5343 34.5621

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2