metadata
language:
- mn
license: apache-2.0
base_model: zagibest/whisper-small-custom-data
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small MN with custom data + Common voice - Zagi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_11_0
type: common_voice_11_0
config: mn
split: None
args: 'config: mn, split: test'
metrics:
- name: Wer
type: wer
value: 43.3431629532547
Whisper Small MN with custom data + Common voice - Zagi
This model is a fine-tuned version of zagibest/whisper-small-custom-data on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6134
- Wer: 43.3432
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2751 | 1.98 | 500 | 0.4451 | 47.4170 |
0.0614 | 3.97 | 1000 | 0.4734 | 45.0579 |
0.0141 | 5.95 | 1500 | 0.5313 | 44.3370 |
0.0033 | 7.94 | 2000 | 0.5615 | 43.6490 |
0.0011 | 9.92 | 2500 | 0.5826 | 43.8565 |
0.0011 | 11.9 | 3000 | 0.6012 | 43.3705 |
0.0004 | 13.89 | 3500 | 0.6094 | 43.3486 |
0.0004 | 15.87 | 4000 | 0.6134 | 43.3432 |
Framework versions
- Transformers 4.39.1
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2