Update README.md
Browse files
README.md
CHANGED
@@ -15,29 +15,17 @@ This model is a fine-tuned version of [vinai/bertweet-covid19-base-uncased](http
|
|
15 |
|
16 |
The model is intended to identify skepticism of COVID-19 policies (i.e. masks, social distancing, lockdowns, vaccines etc.). The model classifies as 0 (expressing skepticism/opposition to a COVID-19 policy or 1 (no opposition)
|
17 |
|
18 |
-
It achieves the following results on the evaluation set:
|
19 |
-
- Train Loss: 0.1007
|
20 |
-
- Train Sparse Categorical Accuracy: 0.9591
|
21 |
-
- Validation Loss: 0.0913
|
22 |
-
- Validation Sparse Categorical Accuracy: 0.9627
|
23 |
-
- Epoch: 3
|
24 |
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
- training_precision: float32
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
|
33 |
-
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:|
|
34 |
-
| 0.1822 | 0.9345 | 0.1021 | 0.9584 | 0 |
|
35 |
-
| 0.1007 | 0.9591 | 0.0913 | 0.9627 | 1 |
|
36 |
|
37 |
-
|
38 |
-
### Framework versions
|
39 |
-
|
40 |
-
- Transformers 4.21.0
|
41 |
-
- TensorFlow 2.8.2
|
42 |
-
- Datasets 2.4.0
|
43 |
-
- Tokenizers 0.12.1
|
|
|
15 |
|
16 |
The model is intended to identify skepticism of COVID-19 policies (i.e. masks, social distancing, lockdowns, vaccines etc.). The model classifies as 0 (expressing skepticism/opposition to a COVID-19 policy or 1 (no opposition)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
It's a pretty simple task but I used a grid search to optimize hyperparameters. The final model is achieves the following results and uses the following hyperparamters:
|
20 |
|
21 |
+
{'train_runtime': 174.3258, 'train_samples_per_second': 18.896, 'train_steps_per_second': 2.375, 'train_loss': 0.1576320076910194, 'epoch': 6.0}
|
22 |
+
{'eval_loss': 0.8522606492042542, 'eval_runtime': 3.8368, 'eval_samples_per_second': 70.111, 'eval_steps_per_second': 8.862, 'epoch': 6.0}
|
|
|
23 |
|
24 |
+
Optimized Hyperparameters
|
25 |
+
----------------------------------------------------------------------------------------------------
|
26 |
+
The best learning rate is: 5.4761828368201554e-05
|
27 |
+
The best weight decay is: 0.0003655991822889909
|
28 |
+
The best epoch is : 6
|
29 |
+
The best train split is : 0.3284489429375188
|
30 |
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|