z-dickson commited on
Commit
a00121e
1 Parent(s): d6cddb7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -21
README.md CHANGED
@@ -15,29 +15,17 @@ This model is a fine-tuned version of [vinai/bertweet-covid19-base-uncased](http
15
 
16
  The model is intended to identify skepticism of COVID-19 policies (i.e. masks, social distancing, lockdowns, vaccines etc.). The model classifies as 0 (expressing skepticism/opposition to a COVID-19 policy or 1 (no opposition)
17
 
18
- It achieves the following results on the evaluation set:
19
- - Train Loss: 0.1007
20
- - Train Sparse Categorical Accuracy: 0.9591
21
- - Validation Loss: 0.0913
22
- - Validation Sparse Categorical Accuracy: 0.9627
23
- - Epoch: 3
24
 
 
25
 
26
- The following hyperparameters were used during training:
27
- - optimizer: {'name': 'Adam', 'learning_rate': 5e-07, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
28
- - training_precision: float32
29
 
30
- ### Training results
 
 
 
 
 
31
 
32
- | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
33
- |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:|
34
- | 0.1822 | 0.9345 | 0.1021 | 0.9584 | 0 |
35
- | 0.1007 | 0.9591 | 0.0913 | 0.9627 | 1 |
36
 
37
-
38
- ### Framework versions
39
-
40
- - Transformers 4.21.0
41
- - TensorFlow 2.8.2
42
- - Datasets 2.4.0
43
- - Tokenizers 0.12.1
 
15
 
16
  The model is intended to identify skepticism of COVID-19 policies (i.e. masks, social distancing, lockdowns, vaccines etc.). The model classifies as 0 (expressing skepticism/opposition to a COVID-19 policy or 1 (no opposition)
17
 
 
 
 
 
 
 
18
 
19
+ It's a pretty simple task but I used a grid search to optimize hyperparameters. The final model is achieves the following results and uses the following hyperparamters:
20
 
21
+ {'train_runtime': 174.3258, 'train_samples_per_second': 18.896, 'train_steps_per_second': 2.375, 'train_loss': 0.1576320076910194, 'epoch': 6.0}
22
+ {'eval_loss': 0.8522606492042542, 'eval_runtime': 3.8368, 'eval_samples_per_second': 70.111, 'eval_steps_per_second': 8.862, 'epoch': 6.0}
 
23
 
24
+ Optimized Hyperparameters
25
+ ----------------------------------------------------------------------------------------------------
26
+ The best learning rate is: 5.4761828368201554e-05
27
+ The best weight decay is: 0.0003655991822889909
28
+ The best epoch is : 6
29
+ The best train split is : 0.3284489429375188
30
 
 
 
 
 
31