yzsydlc commited on
Commit
6c14d70
1 Parent(s): 6d5456d

First model version

Browse files
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "yzsydlc/qwen-primeai-10",
3
+ "architectures": [
4
+ "QWenLMHeadModel"
5
+ ],
6
+ "attn_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "yzsydlc/qwen-primeai-10--configuration_qwen.QWenConfig",
9
+ "AutoModelForCausalLM": "yzsydlc/qwen-primeai-10--modeling_qwen.QWenLMHeadModel"
10
+ },
11
+ "bf16": false,
12
+ "emb_dropout_prob": 0.0,
13
+ "fp16": false,
14
+ "fp32": false,
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 22016,
18
+ "kv_channels": 128,
19
+ "layer_norm_epsilon": 1e-06,
20
+ "max_position_embeddings": 32768,
21
+ "model_type": "qwen",
22
+ "no_bias": true,
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 32,
25
+ "onnx_safe": null,
26
+ "rotary_emb_base": 10000,
27
+ "rotary_pct": 1.0,
28
+ "scale_attn_weights": true,
29
+ "seq_length": 8192,
30
+ "tie_word_embeddings": false,
31
+ "tokenizer_class": "QWenTokenizer",
32
+ "transformers_version": "4.38.1",
33
+ "use_cache": true,
34
+ "use_dynamic_ntk": true,
35
+ "use_flash_attn": "auto",
36
+ "use_logn_attn": true,
37
+ "vocab_size": 151936
38
+ }
configuration_qwen.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ use_cache_quantization=False,
39
+ use_cache_kernel=False,
40
+ softmax_in_fp32=False,
41
+ **kwargs,
42
+ ):
43
+ self.vocab_size = vocab_size
44
+ self.hidden_size = hidden_size
45
+ self.intermediate_size = intermediate_size
46
+ self.num_hidden_layers = num_hidden_layers
47
+ self.num_attention_heads = num_attention_heads
48
+ self.emb_dropout_prob = emb_dropout_prob
49
+ self.attn_dropout_prob = attn_dropout_prob
50
+ self.layer_norm_epsilon = layer_norm_epsilon
51
+ self.initializer_range = initializer_range
52
+ self.scale_attn_weights = scale_attn_weights
53
+ self.use_cache = use_cache
54
+ self.max_position_embeddings = max_position_embeddings
55
+ self.bf16 = bf16
56
+ self.fp16 = fp16
57
+ self.fp32 = fp32
58
+ self.kv_channels = kv_channels
59
+ self.rotary_pct = rotary_pct
60
+ self.rotary_emb_base = rotary_emb_base
61
+ self.use_dynamic_ntk = use_dynamic_ntk
62
+ self.use_logn_attn = use_logn_attn
63
+ self.use_flash_attn = use_flash_attn
64
+ self.no_bias = no_bias
65
+ self.use_cache_quantization = use_cache_quantization
66
+ self.use_cache_kernel = use_cache_kernel
67
+ self.softmax_in_fp32 = softmax_in_fp32
68
+ super().__init__(
69
+ tie_word_embeddings=tie_word_embeddings,
70
+ **kwargs
71
+ )
cpp_kernels.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils import cpp_extension
2
+ import pathlib
3
+ import os
4
+ import subprocess
5
+
6
+ def _get_cuda_bare_metal_version(cuda_dir):
7
+ raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
8
+ universal_newlines=True)
9
+ output = raw_output.split()
10
+ release_idx = output.index("release") + 1
11
+ release = output[release_idx].split(".")
12
+ bare_metal_major = release[0]
13
+ bare_metal_minor = release[1][0]
14
+
15
+ return raw_output, bare_metal_major, bare_metal_minor
16
+
17
+ def _create_build_dir(buildpath):
18
+ try:
19
+ os.mkdir(buildpath)
20
+ except OSError:
21
+ if not os.path.isdir(buildpath):
22
+ print(f"Creation of the build directory {buildpath} failed")
23
+
24
+ # Check if cuda 11 is installed for compute capability 8.0
25
+ cc_flag = []
26
+ _, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
27
+ if int(bare_metal_major) >= 11:
28
+ cc_flag.append('-gencode')
29
+ cc_flag.append('arch=compute_80,code=sm_80')
30
+ if int(bare_metal_minor) >= 7:
31
+ cc_flag.append('-gencode')
32
+ cc_flag.append('arch=compute_90,code=sm_90')
33
+
34
+ # Build path
35
+ srcpath = pathlib.Path(__file__).parent.absolute()
36
+ buildpath = srcpath / 'build'
37
+ _create_build_dir(buildpath)
38
+
39
+ def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
40
+ return cpp_extension.load(
41
+ name=name,
42
+ sources=sources,
43
+ build_directory=buildpath,
44
+ extra_cflags=['-O3', ],
45
+ extra_cuda_cflags=['-O3',
46
+ '-gencode', 'arch=compute_70,code=sm_70',
47
+ '--use_fast_math'] + extra_cuda_flags + cc_flag,
48
+ verbose=1
49
+ )
50
+
51
+ extra_flags = []
52
+
53
+ cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
54
+ "./cache_autogptq_cuda_kernel_256.cu"]
55
+ cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "raw",
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 512,
6
+ "pad_token_id": 151643,
7
+ "stop_words_ids": [
8
+ [
9
+ 151643
10
+ ]
11
+ ],
12
+ "top_k": 0,
13
+ "top_p": 0.8,
14
+ "transformers_version": "4.38.1"
15
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24d1db0e686db8e39d33d76e93215738dbc12f8bc8f8fce87f2018615430b43f
3
+ size 4987404376
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6d6be4926c3b02fd8f61752c01c2e6cd84d2a3a1b0d18dfab1b78e3c692ae40
3
+ size 4939667696
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45a2b2ade6a226dfd83055f2e3e3fd63c16db3f2999dde7947ceef5ead6339c5
3
+ size 4247016592
model.safetensors.index.json ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14174060544
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "transformer.h.0.attn.c_attn.bias": "model-00001-of-00003.safetensors",
8
+ "transformer.h.0.attn.c_attn.weight": "model-00001-of-00003.safetensors",
9
+ "transformer.h.0.attn.c_proj.weight": "model-00001-of-00003.safetensors",
10
+ "transformer.h.0.ln_1.weight": "model-00001-of-00003.safetensors",
11
+ "transformer.h.0.ln_2.weight": "model-00001-of-00003.safetensors",
12
+ "transformer.h.0.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
13
+ "transformer.h.0.mlp.w1.weight": "model-00001-of-00003.safetensors",
14
+ "transformer.h.0.mlp.w2.weight": "model-00001-of-00003.safetensors",
15
+ "transformer.h.1.attn.c_attn.bias": "model-00001-of-00003.safetensors",
16
+ "transformer.h.1.attn.c_attn.weight": "model-00001-of-00003.safetensors",
17
+ "transformer.h.1.attn.c_proj.weight": "model-00001-of-00003.safetensors",
18
+ "transformer.h.1.ln_1.weight": "model-00001-of-00003.safetensors",
19
+ "transformer.h.1.ln_2.weight": "model-00001-of-00003.safetensors",
20
+ "transformer.h.1.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
21
+ "transformer.h.1.mlp.w1.weight": "model-00001-of-00003.safetensors",
22
+ "transformer.h.1.mlp.w2.weight": "model-00001-of-00003.safetensors",
23
+ "transformer.h.10.attn.c_attn.bias": "model-00001-of-00003.safetensors",
24
+ "transformer.h.10.attn.c_attn.weight": "model-00001-of-00003.safetensors",
25
+ "transformer.h.10.attn.c_proj.weight": "model-00002-of-00003.safetensors",
26
+ "transformer.h.10.ln_1.weight": "model-00001-of-00003.safetensors",
27
+ "transformer.h.10.ln_2.weight": "model-00002-of-00003.safetensors",
28
+ "transformer.h.10.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
29
+ "transformer.h.10.mlp.w1.weight": "model-00002-of-00003.safetensors",
30
+ "transformer.h.10.mlp.w2.weight": "model-00002-of-00003.safetensors",
31
+ "transformer.h.11.attn.c_attn.bias": "model-00002-of-00003.safetensors",
32
+ "transformer.h.11.attn.c_attn.weight": "model-00002-of-00003.safetensors",
33
+ "transformer.h.11.attn.c_proj.weight": "model-00002-of-00003.safetensors",
34
+ "transformer.h.11.ln_1.weight": "model-00002-of-00003.safetensors",
35
+ "transformer.h.11.ln_2.weight": "model-00002-of-00003.safetensors",
36
+ "transformer.h.11.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
37
+ "transformer.h.11.mlp.w1.weight": "model-00002-of-00003.safetensors",
38
+ "transformer.h.11.mlp.w2.weight": "model-00002-of-00003.safetensors",
39
+ "transformer.h.12.attn.c_attn.bias": "model-00002-of-00003.safetensors",
40
+ "transformer.h.12.attn.c_attn.weight": "model-00002-of-00003.safetensors",
41
+ "transformer.h.12.attn.c_proj.weight": "model-00002-of-00003.safetensors",
42
+ "transformer.h.12.ln_1.weight": "model-00002-of-00003.safetensors",
43
+ "transformer.h.12.ln_2.weight": "model-00002-of-00003.safetensors",
44
+ "transformer.h.12.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
45
+ "transformer.h.12.mlp.w1.weight": "model-00002-of-00003.safetensors",
46
+ "transformer.h.12.mlp.w2.weight": "model-00002-of-00003.safetensors",
47
+ "transformer.h.13.attn.c_attn.bias": "model-00002-of-00003.safetensors",
48
+ "transformer.h.13.attn.c_attn.weight": "model-00002-of-00003.safetensors",
49
+ "transformer.h.13.attn.c_proj.weight": "model-00002-of-00003.safetensors",
50
+ "transformer.h.13.ln_1.weight": "model-00002-of-00003.safetensors",
51
+ "transformer.h.13.ln_2.weight": "model-00002-of-00003.safetensors",
52
+ "transformer.h.13.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
53
+ "transformer.h.13.mlp.w1.weight": "model-00002-of-00003.safetensors",
54
+ "transformer.h.13.mlp.w2.weight": "model-00002-of-00003.safetensors",
55
+ "transformer.h.14.attn.c_attn.bias": "model-00002-of-00003.safetensors",
56
+ "transformer.h.14.attn.c_attn.weight": "model-00002-of-00003.safetensors",
57
+ "transformer.h.14.attn.c_proj.weight": "model-00002-of-00003.safetensors",
58
+ "transformer.h.14.ln_1.weight": "model-00002-of-00003.safetensors",
59
+ "transformer.h.14.ln_2.weight": "model-00002-of-00003.safetensors",
60
+ "transformer.h.14.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
61
+ "transformer.h.14.mlp.w1.weight": "model-00002-of-00003.safetensors",
62
+ "transformer.h.14.mlp.w2.weight": "model-00002-of-00003.safetensors",
63
+ "transformer.h.15.attn.c_attn.bias": "model-00002-of-00003.safetensors",
64
+ "transformer.h.15.attn.c_attn.weight": "model-00002-of-00003.safetensors",
65
+ "transformer.h.15.attn.c_proj.weight": "model-00002-of-00003.safetensors",
66
+ "transformer.h.15.ln_1.weight": "model-00002-of-00003.safetensors",
67
+ "transformer.h.15.ln_2.weight": "model-00002-of-00003.safetensors",
68
+ "transformer.h.15.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
69
+ "transformer.h.15.mlp.w1.weight": "model-00002-of-00003.safetensors",
70
+ "transformer.h.15.mlp.w2.weight": "model-00002-of-00003.safetensors",
71
+ "transformer.h.16.attn.c_attn.bias": "model-00002-of-00003.safetensors",
72
+ "transformer.h.16.attn.c_attn.weight": "model-00002-of-00003.safetensors",
73
+ "transformer.h.16.attn.c_proj.weight": "model-00002-of-00003.safetensors",
74
+ "transformer.h.16.ln_1.weight": "model-00002-of-00003.safetensors",
75
+ "transformer.h.16.ln_2.weight": "model-00002-of-00003.safetensors",
76
+ "transformer.h.16.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
77
+ "transformer.h.16.mlp.w1.weight": "model-00002-of-00003.safetensors",
78
+ "transformer.h.16.mlp.w2.weight": "model-00002-of-00003.safetensors",
79
+ "transformer.h.17.attn.c_attn.bias": "model-00002-of-00003.safetensors",
80
+ "transformer.h.17.attn.c_attn.weight": "model-00002-of-00003.safetensors",
81
+ "transformer.h.17.attn.c_proj.weight": "model-00002-of-00003.safetensors",
82
+ "transformer.h.17.ln_1.weight": "model-00002-of-00003.safetensors",
83
+ "transformer.h.17.ln_2.weight": "model-00002-of-00003.safetensors",
84
+ "transformer.h.17.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
85
+ "transformer.h.17.mlp.w1.weight": "model-00002-of-00003.safetensors",
86
+ "transformer.h.17.mlp.w2.weight": "model-00002-of-00003.safetensors",
87
+ "transformer.h.18.attn.c_attn.bias": "model-00002-of-00003.safetensors",
88
+ "transformer.h.18.attn.c_attn.weight": "model-00002-of-00003.safetensors",
89
+ "transformer.h.18.attn.c_proj.weight": "model-00002-of-00003.safetensors",
90
+ "transformer.h.18.ln_1.weight": "model-00002-of-00003.safetensors",
91
+ "transformer.h.18.ln_2.weight": "model-00002-of-00003.safetensors",
92
+ "transformer.h.18.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
93
+ "transformer.h.18.mlp.w1.weight": "model-00002-of-00003.safetensors",
94
+ "transformer.h.18.mlp.w2.weight": "model-00002-of-00003.safetensors",
95
+ "transformer.h.19.attn.c_attn.bias": "model-00002-of-00003.safetensors",
96
+ "transformer.h.19.attn.c_attn.weight": "model-00002-of-00003.safetensors",
97
+ "transformer.h.19.attn.c_proj.weight": "model-00002-of-00003.safetensors",
98
+ "transformer.h.19.ln_1.weight": "model-00002-of-00003.safetensors",
99
+ "transformer.h.19.ln_2.weight": "model-00002-of-00003.safetensors",
100
+ "transformer.h.19.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
101
+ "transformer.h.19.mlp.w1.weight": "model-00002-of-00003.safetensors",
102
+ "transformer.h.19.mlp.w2.weight": "model-00002-of-00003.safetensors",
103
+ "transformer.h.2.attn.c_attn.bias": "model-00001-of-00003.safetensors",
104
+ "transformer.h.2.attn.c_attn.weight": "model-00001-of-00003.safetensors",
105
+ "transformer.h.2.attn.c_proj.weight": "model-00001-of-00003.safetensors",
106
+ "transformer.h.2.ln_1.weight": "model-00001-of-00003.safetensors",
107
+ "transformer.h.2.ln_2.weight": "model-00001-of-00003.safetensors",
108
+ "transformer.h.2.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
109
+ "transformer.h.2.mlp.w1.weight": "model-00001-of-00003.safetensors",
110
+ "transformer.h.2.mlp.w2.weight": "model-00001-of-00003.safetensors",
111
+ "transformer.h.20.attn.c_attn.bias": "model-00002-of-00003.safetensors",
112
+ "transformer.h.20.attn.c_attn.weight": "model-00002-of-00003.safetensors",
113
+ "transformer.h.20.attn.c_proj.weight": "model-00002-of-00003.safetensors",
114
+ "transformer.h.20.ln_1.weight": "model-00002-of-00003.safetensors",
115
+ "transformer.h.20.ln_2.weight": "model-00002-of-00003.safetensors",
116
+ "transformer.h.20.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
117
+ "transformer.h.20.mlp.w1.weight": "model-00002-of-00003.safetensors",
118
+ "transformer.h.20.mlp.w2.weight": "model-00002-of-00003.safetensors",
119
+ "transformer.h.21.attn.c_attn.bias": "model-00002-of-00003.safetensors",
120
+ "transformer.h.21.attn.c_attn.weight": "model-00002-of-00003.safetensors",
121
+ "transformer.h.21.attn.c_proj.weight": "model-00002-of-00003.safetensors",
122
+ "transformer.h.21.ln_1.weight": "model-00002-of-00003.safetensors",
123
+ "transformer.h.21.ln_2.weight": "model-00002-of-00003.safetensors",
124
+ "transformer.h.21.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
125
+ "transformer.h.21.mlp.w1.weight": "model-00002-of-00003.safetensors",
126
+ "transformer.h.21.mlp.w2.weight": "model-00002-of-00003.safetensors",
127
+ "transformer.h.22.attn.c_attn.bias": "model-00002-of-00003.safetensors",
128
+ "transformer.h.22.attn.c_attn.weight": "model-00002-of-00003.safetensors",
129
+ "transformer.h.22.attn.c_proj.weight": "model-00002-of-00003.safetensors",
130
+ "transformer.h.22.ln_1.weight": "model-00002-of-00003.safetensors",
131
+ "transformer.h.22.ln_2.weight": "model-00002-of-00003.safetensors",
132
+ "transformer.h.22.mlp.c_proj.weight": "model-00002-of-00003.safetensors",
133
+ "transformer.h.22.mlp.w1.weight": "model-00002-of-00003.safetensors",
134
+ "transformer.h.22.mlp.w2.weight": "model-00002-of-00003.safetensors",
135
+ "transformer.h.23.attn.c_attn.bias": "model-00002-of-00003.safetensors",
136
+ "transformer.h.23.attn.c_attn.weight": "model-00002-of-00003.safetensors",
137
+ "transformer.h.23.attn.c_proj.weight": "model-00002-of-00003.safetensors",
138
+ "transformer.h.23.ln_1.weight": "model-00002-of-00003.safetensors",
139
+ "transformer.h.23.ln_2.weight": "model-00002-of-00003.safetensors",
140
+ "transformer.h.23.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
141
+ "transformer.h.23.mlp.w1.weight": "model-00002-of-00003.safetensors",
142
+ "transformer.h.23.mlp.w2.weight": "model-00002-of-00003.safetensors",
143
+ "transformer.h.24.attn.c_attn.bias": "model-00003-of-00003.safetensors",
144
+ "transformer.h.24.attn.c_attn.weight": "model-00003-of-00003.safetensors",
145
+ "transformer.h.24.attn.c_proj.weight": "model-00003-of-00003.safetensors",
146
+ "transformer.h.24.ln_1.weight": "model-00003-of-00003.safetensors",
147
+ "transformer.h.24.ln_2.weight": "model-00003-of-00003.safetensors",
148
+ "transformer.h.24.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
149
+ "transformer.h.24.mlp.w1.weight": "model-00003-of-00003.safetensors",
150
+ "transformer.h.24.mlp.w2.weight": "model-00003-of-00003.safetensors",
151
+ "transformer.h.25.attn.c_attn.bias": "model-00003-of-00003.safetensors",
152
+ "transformer.h.25.attn.c_attn.weight": "model-00003-of-00003.safetensors",
153
+ "transformer.h.25.attn.c_proj.weight": "model-00003-of-00003.safetensors",
154
+ "transformer.h.25.ln_1.weight": "model-00003-of-00003.safetensors",
155
+ "transformer.h.25.ln_2.weight": "model-00003-of-00003.safetensors",
156
+ "transformer.h.25.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
157
+ "transformer.h.25.mlp.w1.weight": "model-00003-of-00003.safetensors",
158
+ "transformer.h.25.mlp.w2.weight": "model-00003-of-00003.safetensors",
159
+ "transformer.h.26.attn.c_attn.bias": "model-00003-of-00003.safetensors",
160
+ "transformer.h.26.attn.c_attn.weight": "model-00003-of-00003.safetensors",
161
+ "transformer.h.26.attn.c_proj.weight": "model-00003-of-00003.safetensors",
162
+ "transformer.h.26.ln_1.weight": "model-00003-of-00003.safetensors",
163
+ "transformer.h.26.ln_2.weight": "model-00003-of-00003.safetensors",
164
+ "transformer.h.26.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
165
+ "transformer.h.26.mlp.w1.weight": "model-00003-of-00003.safetensors",
166
+ "transformer.h.26.mlp.w2.weight": "model-00003-of-00003.safetensors",
167
+ "transformer.h.27.attn.c_attn.bias": "model-00003-of-00003.safetensors",
168
+ "transformer.h.27.attn.c_attn.weight": "model-00003-of-00003.safetensors",
169
+ "transformer.h.27.attn.c_proj.weight": "model-00003-of-00003.safetensors",
170
+ "transformer.h.27.ln_1.weight": "model-00003-of-00003.safetensors",
171
+ "transformer.h.27.ln_2.weight": "model-00003-of-00003.safetensors",
172
+ "transformer.h.27.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
173
+ "transformer.h.27.mlp.w1.weight": "model-00003-of-00003.safetensors",
174
+ "transformer.h.27.mlp.w2.weight": "model-00003-of-00003.safetensors",
175
+ "transformer.h.28.attn.c_attn.bias": "model-00003-of-00003.safetensors",
176
+ "transformer.h.28.attn.c_attn.weight": "model-00003-of-00003.safetensors",
177
+ "transformer.h.28.attn.c_proj.weight": "model-00003-of-00003.safetensors",
178
+ "transformer.h.28.ln_1.weight": "model-00003-of-00003.safetensors",
179
+ "transformer.h.28.ln_2.weight": "model-00003-of-00003.safetensors",
180
+ "transformer.h.28.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
181
+ "transformer.h.28.mlp.w1.weight": "model-00003-of-00003.safetensors",
182
+ "transformer.h.28.mlp.w2.weight": "model-00003-of-00003.safetensors",
183
+ "transformer.h.29.attn.c_attn.bias": "model-00003-of-00003.safetensors",
184
+ "transformer.h.29.attn.c_attn.weight": "model-00003-of-00003.safetensors",
185
+ "transformer.h.29.attn.c_proj.weight": "model-00003-of-00003.safetensors",
186
+ "transformer.h.29.ln_1.weight": "model-00003-of-00003.safetensors",
187
+ "transformer.h.29.ln_2.weight": "model-00003-of-00003.safetensors",
188
+ "transformer.h.29.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
189
+ "transformer.h.29.mlp.w1.weight": "model-00003-of-00003.safetensors",
190
+ "transformer.h.29.mlp.w2.weight": "model-00003-of-00003.safetensors",
191
+ "transformer.h.3.attn.c_attn.bias": "model-00001-of-00003.safetensors",
192
+ "transformer.h.3.attn.c_attn.weight": "model-00001-of-00003.safetensors",
193
+ "transformer.h.3.attn.c_proj.weight": "model-00001-of-00003.safetensors",
194
+ "transformer.h.3.ln_1.weight": "model-00001-of-00003.safetensors",
195
+ "transformer.h.3.ln_2.weight": "model-00001-of-00003.safetensors",
196
+ "transformer.h.3.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
197
+ "transformer.h.3.mlp.w1.weight": "model-00001-of-00003.safetensors",
198
+ "transformer.h.3.mlp.w2.weight": "model-00001-of-00003.safetensors",
199
+ "transformer.h.30.attn.c_attn.bias": "model-00003-of-00003.safetensors",
200
+ "transformer.h.30.attn.c_attn.weight": "model-00003-of-00003.safetensors",
201
+ "transformer.h.30.attn.c_proj.weight": "model-00003-of-00003.safetensors",
202
+ "transformer.h.30.ln_1.weight": "model-00003-of-00003.safetensors",
203
+ "transformer.h.30.ln_2.weight": "model-00003-of-00003.safetensors",
204
+ "transformer.h.30.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
205
+ "transformer.h.30.mlp.w1.weight": "model-00003-of-00003.safetensors",
206
+ "transformer.h.30.mlp.w2.weight": "model-00003-of-00003.safetensors",
207
+ "transformer.h.31.attn.c_attn.bias": "model-00003-of-00003.safetensors",
208
+ "transformer.h.31.attn.c_attn.weight": "model-00003-of-00003.safetensors",
209
+ "transformer.h.31.attn.c_proj.weight": "model-00003-of-00003.safetensors",
210
+ "transformer.h.31.ln_1.weight": "model-00003-of-00003.safetensors",
211
+ "transformer.h.31.ln_2.weight": "model-00003-of-00003.safetensors",
212
+ "transformer.h.31.mlp.c_proj.weight": "model-00003-of-00003.safetensors",
213
+ "transformer.h.31.mlp.w1.weight": "model-00003-of-00003.safetensors",
214
+ "transformer.h.31.mlp.w2.weight": "model-00003-of-00003.safetensors",
215
+ "transformer.h.4.attn.c_attn.bias": "model-00001-of-00003.safetensors",
216
+ "transformer.h.4.attn.c_attn.weight": "model-00001-of-00003.safetensors",
217
+ "transformer.h.4.attn.c_proj.weight": "model-00001-of-00003.safetensors",
218
+ "transformer.h.4.ln_1.weight": "model-00001-of-00003.safetensors",
219
+ "transformer.h.4.ln_2.weight": "model-00001-of-00003.safetensors",
220
+ "transformer.h.4.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
221
+ "transformer.h.4.mlp.w1.weight": "model-00001-of-00003.safetensors",
222
+ "transformer.h.4.mlp.w2.weight": "model-00001-of-00003.safetensors",
223
+ "transformer.h.5.attn.c_attn.bias": "model-00001-of-00003.safetensors",
224
+ "transformer.h.5.attn.c_attn.weight": "model-00001-of-00003.safetensors",
225
+ "transformer.h.5.attn.c_proj.weight": "model-00001-of-00003.safetensors",
226
+ "transformer.h.5.ln_1.weight": "model-00001-of-00003.safetensors",
227
+ "transformer.h.5.ln_2.weight": "model-00001-of-00003.safetensors",
228
+ "transformer.h.5.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
229
+ "transformer.h.5.mlp.w1.weight": "model-00001-of-00003.safetensors",
230
+ "transformer.h.5.mlp.w2.weight": "model-00001-of-00003.safetensors",
231
+ "transformer.h.6.attn.c_attn.bias": "model-00001-of-00003.safetensors",
232
+ "transformer.h.6.attn.c_attn.weight": "model-00001-of-00003.safetensors",
233
+ "transformer.h.6.attn.c_proj.weight": "model-00001-of-00003.safetensors",
234
+ "transformer.h.6.ln_1.weight": "model-00001-of-00003.safetensors",
235
+ "transformer.h.6.ln_2.weight": "model-00001-of-00003.safetensors",
236
+ "transformer.h.6.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
237
+ "transformer.h.6.mlp.w1.weight": "model-00001-of-00003.safetensors",
238
+ "transformer.h.6.mlp.w2.weight": "model-00001-of-00003.safetensors",
239
+ "transformer.h.7.attn.c_attn.bias": "model-00001-of-00003.safetensors",
240
+ "transformer.h.7.attn.c_attn.weight": "model-00001-of-00003.safetensors",
241
+ "transformer.h.7.attn.c_proj.weight": "model-00001-of-00003.safetensors",
242
+ "transformer.h.7.ln_1.weight": "model-00001-of-00003.safetensors",
243
+ "transformer.h.7.ln_2.weight": "model-00001-of-00003.safetensors",
244
+ "transformer.h.7.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
245
+ "transformer.h.7.mlp.w1.weight": "model-00001-of-00003.safetensors",
246
+ "transformer.h.7.mlp.w2.weight": "model-00001-of-00003.safetensors",
247
+ "transformer.h.8.attn.c_attn.bias": "model-00001-of-00003.safetensors",
248
+ "transformer.h.8.attn.c_attn.weight": "model-00001-of-00003.safetensors",
249
+ "transformer.h.8.attn.c_proj.weight": "model-00001-of-00003.safetensors",
250
+ "transformer.h.8.ln_1.weight": "model-00001-of-00003.safetensors",
251
+ "transformer.h.8.ln_2.weight": "model-00001-of-00003.safetensors",
252
+ "transformer.h.8.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
253
+ "transformer.h.8.mlp.w1.weight": "model-00001-of-00003.safetensors",
254
+ "transformer.h.8.mlp.w2.weight": "model-00001-of-00003.safetensors",
255
+ "transformer.h.9.attn.c_attn.bias": "model-00001-of-00003.safetensors",
256
+ "transformer.h.9.attn.c_attn.weight": "model-00001-of-00003.safetensors",
257
+ "transformer.h.9.attn.c_proj.weight": "model-00001-of-00003.safetensors",
258
+ "transformer.h.9.ln_1.weight": "model-00001-of-00003.safetensors",
259
+ "transformer.h.9.ln_2.weight": "model-00001-of-00003.safetensors",
260
+ "transformer.h.9.mlp.c_proj.weight": "model-00001-of-00003.safetensors",
261
+ "transformer.h.9.mlp.w1.weight": "model-00001-of-00003.safetensors",
262
+ "transformer.h.9.mlp.w2.weight": "model-00001-of-00003.safetensors",
263
+ "transformer.ln_f.weight": "model-00003-of-00003.safetensors",
264
+ "transformer.wte.weight": "model-00001-of-00003.safetensors"
265
+ }
266
+ }
modeling_qwen.py ADDED
@@ -0,0 +1,1388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import copy
7
+ import importlib
8
+ import math
9
+ import pathlib
10
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
11
+
12
+ import torch
13
+ import torch.nn.functional as F
14
+ import torch.utils.checkpoint
15
+ import warnings
16
+
17
+ from torch.nn import CrossEntropyLoss
18
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
19
+ from transformers.generation.logits_process import LogitsProcessorList
20
+
21
+ if TYPE_CHECKING:
22
+ from transformers.generation.streamers import BaseStreamer
23
+ from transformers.generation.utils import GenerateOutput
24
+ from transformers.modeling_outputs import (
25
+ BaseModelOutputWithPast,
26
+ CausalLMOutputWithPast,
27
+ )
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.utils import logging
30
+
31
+ try:
32
+ from einops import rearrange
33
+ except ImportError:
34
+ rearrange = None
35
+ from torch import nn
36
+
37
+ SUPPORT_CUDA = torch.cuda.is_available()
38
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
39
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
40
+ SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
41
+
42
+
43
+ from .configuration_qwen import QWenConfig
44
+ from .qwen_generation_utils import (
45
+ HistoryType,
46
+ make_context,
47
+ decode_tokens,
48
+ get_stop_words_ids,
49
+ StopWordsLogitsProcessor,
50
+ )
51
+
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CHECKPOINT_FOR_DOC = "qwen"
56
+ _CONFIG_FOR_DOC = "QWenConfig"
57
+
58
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
59
+
60
+ _ERROR_BAD_CHAT_FORMAT = """\
61
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
62
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
63
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
64
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
65
+ """
66
+
67
+ _SENTINEL = object()
68
+ _ERROR_STREAM_IN_CHAT = """\
69
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
70
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
71
+ """
72
+
73
+ _ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
74
+ We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
75
+ 检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
76
+ """
77
+
78
+ apply_rotary_emb_func = None
79
+ rms_norm = None
80
+ flash_attn_unpadded_func = None
81
+ flash_attn_func = None
82
+
83
+ def _import_flash_attn():
84
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func, flash_attn_func
85
+ try:
86
+ from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
87
+ apply_rotary_emb_func = __apply_rotary_emb_func
88
+ except ImportError:
89
+ logger.warn(
90
+ "Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
91
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
92
+ )
93
+
94
+ try:
95
+ from flash_attn.ops.rms_norm import rms_norm as __rms_norm
96
+ rms_norm = __rms_norm
97
+ except ImportError:
98
+ logger.warn(
99
+ "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
100
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
101
+ )
102
+
103
+ try:
104
+ import flash_attn
105
+ _flash_attn_func = None
106
+ if not hasattr(flash_attn, '__version__'):
107
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
108
+ else:
109
+ if int(flash_attn.__version__.split(".")[0]) >= 2:
110
+ if int(flash_attn.__version__.split(".")[1]) >= 1:
111
+ from flash_attn.flash_attn_interface import flash_attn_func as _flash_attn_func
112
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
113
+ else:
114
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
115
+ flash_attn_unpadded_func = __flash_attn_unpadded_func
116
+ flash_attn_func = _flash_attn_func
117
+ except ImportError:
118
+ logger.warn(
119
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
120
+ "https://github.com/Dao-AILab/flash-attention"
121
+ )
122
+
123
+ def quantize_cache_v(fdata, bits, qmax, qmin):
124
+ # b, s, head, h-dim->b, head, s, h-dim
125
+ qtype = torch.uint8
126
+ device = fdata.device
127
+ shape = fdata.shape
128
+
129
+ fdata_cal = torch.flatten(fdata, 2)
130
+ fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
131
+ fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
132
+ # Compute params
133
+ if qmax.device != fmax.device:
134
+ qmax = qmax.to(device)
135
+ qmin = qmin.to(device)
136
+ scale = (fmax - fmin) / (qmax - qmin)
137
+ zero = qmin - fmin / scale
138
+ scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
139
+ zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
140
+ # Quantize
141
+ res_data = fdata / scale + zero
142
+ qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
143
+ return qdata.contiguous(), scale, zero
144
+
145
+ def dequantize_cache_torch(qdata, scale, zero):
146
+ data = scale * (qdata - zero)
147
+ return data
148
+
149
+ class FlashSelfAttention(torch.nn.Module):
150
+ def __init__(
151
+ self,
152
+ causal=False,
153
+ softmax_scale=None,
154
+ attention_dropout=0.0,
155
+ ):
156
+ super().__init__()
157
+ assert flash_attn_unpadded_func is not None, (
158
+ "Please install FlashAttention first, " "e.g., with pip install flash-attn"
159
+ )
160
+ assert (
161
+ rearrange is not None
162
+ ), "Please install einops first, e.g., with pip install einops"
163
+ self.causal = causal
164
+ self.softmax_scale = softmax_scale
165
+ self.dropout_p = attention_dropout
166
+
167
+ def unpad_input(self, hidden_states, attention_mask):
168
+ valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
169
+ seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
170
+ indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
171
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
172
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
173
+ hidden_states = hidden_states[indices]
174
+ return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
175
+
176
+ def pad_input(self, hidden_states, indices, batch, seqlen):
177
+ output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
178
+ dtype=hidden_states.dtype)
179
+ output[indices] = hidden_states
180
+ return rearrange(output, '(b s) ... -> b s ...', b=batch)
181
+
182
+ def forward(self, q, k, v, attention_mask=None):
183
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
184
+ assert all((i.is_cuda for i in (q, k, v)))
185
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
186
+ seqlen_k = k.shape[1]
187
+ seqlen_out = seqlen_q
188
+
189
+ if flash_attn_func is not None and batch_size == 1:
190
+ dropout_p = self.dropout_p if self.training else 0
191
+ output = flash_attn_func(q, k, v, dropout_p, softmax_scale=self.softmax_scale, causal=self.causal)
192
+ return output
193
+
194
+ q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
195
+ cu_seqlens_q = torch.arange(
196
+ 0,
197
+ (batch_size + 1) * seqlen_q,
198
+ step=seqlen_q,
199
+ dtype=torch.int32,
200
+ device=q.device,
201
+ )
202
+
203
+ if batch_size > 1 and attention_mask is not None:
204
+ k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
205
+ if q.size(0) == v.size(0):
206
+ q = q[indices_k]
207
+ cu_seqlens_q = cu_seqlens_k
208
+ seqlen_q = seqlen_k
209
+ v = v[indices_k]
210
+ else:
211
+ cu_seqlens_k = torch.arange(
212
+ 0,
213
+ (batch_size + 1) * seqlen_k,
214
+ step=seqlen_k,
215
+ dtype=torch.int32,
216
+ device=q.device,
217
+ )
218
+
219
+ if self.training:
220
+ assert seqlen_k == seqlen_q
221
+ is_causal = self.causal
222
+ dropout_p = self.dropout_p
223
+ else:
224
+ is_causal = seqlen_q == seqlen_k
225
+ dropout_p = 0
226
+
227
+ output = flash_attn_unpadded_func(
228
+ q,
229
+ k,
230
+ v,
231
+ cu_seqlens_q,
232
+ cu_seqlens_k,
233
+ seqlen_q,
234
+ seqlen_k,
235
+ dropout_p,
236
+ softmax_scale=self.softmax_scale,
237
+ causal=is_causal,
238
+ )
239
+ if batch_size > 1 and attention_mask is not None and seqlen_q == seqlen_k:
240
+ output = self.pad_input(output, indices_k, batch_size, seqlen_out)
241
+ else:
242
+ new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
243
+ output = output.view(new_shape)
244
+ return output
245
+
246
+
247
+ class QWenAttention(nn.Module):
248
+ def __init__(self, config):
249
+ super().__init__()
250
+
251
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
252
+ self.seq_length = config.seq_length
253
+
254
+ self.hidden_size = config.hidden_size
255
+ self.split_size = config.hidden_size
256
+ self.num_heads = config.num_attention_heads
257
+ self.head_dim = self.hidden_size // self.num_heads
258
+
259
+ self.use_flash_attn = config.use_flash_attn
260
+ self.scale_attn_weights = True
261
+
262
+ self.projection_size = config.kv_channels * config.num_attention_heads
263
+
264
+ assert self.projection_size % config.num_attention_heads == 0
265
+ self.hidden_size_per_attention_head = (
266
+ self.projection_size // config.num_attention_heads
267
+ )
268
+
269
+ #self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
270
+ #
271
+ #self.c_proj = nn.Linear(
272
+ # config.hidden_size, self.projection_size, bias=not config.no_bias
273
+ #)
274
+
275
+ self.c_attn = nn.Linear(config.hidden_size , 3 * (self.projection_size * 0.90625))
276
+ self.c_proj = nn.Linear(
277
+ config.hidden_size * 0.90625, self.projection_size, bias=not config.no_bias
278
+ )
279
+
280
+ self.is_fp32 = not (config.bf16 or config.fp16)
281
+ if (
282
+ self.use_flash_attn
283
+ and flash_attn_unpadded_func is not None
284
+ and not self.is_fp32
285
+ ):
286
+ self.core_attention_flash = FlashSelfAttention(
287
+ causal=True, attention_dropout=config.attn_dropout_prob
288
+ )
289
+ self.bf16 = config.bf16
290
+
291
+ self.use_dynamic_ntk = config.use_dynamic_ntk
292
+ self.use_logn_attn = config.use_logn_attn
293
+
294
+ logn_list = [
295
+ math.log(i, self.seq_length) if i > self.seq_length else 1
296
+ for i in range(1, 32768)
297
+ ]
298
+ logn_tensor = torch.tensor(logn_list)[None, :, None, None]
299
+ self.register_buffer("logn_tensor", logn_tensor, persistent=False)
300
+
301
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
302
+ self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, 'softmax_in_fp32') else False
303
+ self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
304
+ self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
305
+ cache_dtype = torch.float
306
+ if self.bf16:
307
+ cache_dtype=torch.bfloat16
308
+ elif config.fp16:
309
+ cache_dtype = torch.float16
310
+ self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
311
+ self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
312
+
313
+ if config.use_cache_quantization and config.use_cache_kernel:
314
+ # pre check if the support files existing
315
+ module_root = pathlib.Path(__file__).parent
316
+ src_files = ("cache_autogptq_cuda_256.cpp", "cache_autogptq_cuda_kernel_256.cu")
317
+ if any(not (module_root/src).is_file() for src in src_files):
318
+ warnings.warn("KV cache kernel source files (.cpp and .cu) not found.")
319
+ self.cache_kernels = None
320
+ else:
321
+ try:
322
+ from .cpp_kernels import cache_autogptq_cuda_256
323
+ self.cache_kernels = cache_autogptq_cuda_256
324
+ except ImportError:
325
+ warnings.warn("Failed to import KV cache kernels.")
326
+ self.cache_kernels = None
327
+
328
+ def _attn(self, query, key, value, causal_mask=None, attention_mask=None, head_mask=None):
329
+ device = query.device
330
+ if self.use_cache_quantization:
331
+ qk, qk_scale, qk_zero = key
332
+ if self.use_cache_kernel and self.cache_kernels is not None:
333
+ shape = query.shape[:-1] + (qk.shape[-2],)
334
+ attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
335
+ self.cache_kernels.vecquant8matmul_batched_faster_old(
336
+ query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
337
+ qk.transpose(-1, -2).contiguous(),
338
+ attn_weights,
339
+ qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
340
+ qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
341
+ # attn_weights = attn_weights.to(query.dtype).contiguous()
342
+ else:
343
+ key = dequantize_cache_torch(qk, qk_scale, qk_zero)
344
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
345
+ else:
346
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
347
+
348
+ if self.scale_attn_weights:
349
+ if self.use_cache_quantization:
350
+ size_temp = value[0].size(-1)
351
+ else:
352
+ size_temp = value.size(-1)
353
+ attn_weights = attn_weights / (size_temp ** 0.5)
354
+
355
+ mask_value = torch.finfo(attn_weights.dtype).min
356
+ if causal_mask is not None:
357
+ attn_weights = torch.where(
358
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
359
+ )
360
+
361
+ if attention_mask is not None:
362
+ attn_weights = attn_weights + attention_mask
363
+
364
+ if self.softmax_in_fp32:
365
+ attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
366
+ else:
367
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
368
+
369
+ attn_weights = attn_weights.type(query.dtype)
370
+ attn_weights = self.attn_dropout(attn_weights)
371
+
372
+ if head_mask is not None:
373
+ attn_weights = attn_weights * head_mask
374
+
375
+ if self.use_cache_quantization:
376
+ qv, qv_scale, qv_zero = value
377
+ if self.use_cache_kernel and self.cache_kernels is not None:
378
+ shape = attn_weights.shape[:-1] + (query.shape[-1],)
379
+ attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
380
+ self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
381
+ attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
382
+ qv.contiguous(), # dtype: int32
383
+ attn_output,
384
+ qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
385
+ qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
386
+ if attn_output.dtype != query.dtype:
387
+ attn_output = attn_output.to(query.dtype)
388
+ attn_weights = attn_weights.to(query.dtype)
389
+ else:
390
+ value = dequantize_cache_torch(qv, qv_scale, qv_zero)
391
+ attn_output = torch.matmul(attn_weights, value)
392
+ else:
393
+ attn_output = torch.matmul(attn_weights, value)
394
+
395
+ attn_output = attn_output.transpose(1, 2)
396
+
397
+ return attn_output, attn_weights
398
+
399
+ def _split_heads(self, tensor, num_heads, attn_head_size):
400
+ #new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
401
+ new_shape = tensor.size()[:-1] + (num_heads * 0.9, attn_head_size)
402
+ tensor = tensor.view(new_shape)
403
+ return tensor
404
+
405
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
406
+ tensor = tensor.contiguous()
407
+ #new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
408
+ new_shape = tensor.size()[:-2] + ((num_heads * 0.9) * attn_head_size,)
409
+ return tensor.view(new_shape)
410
+
411
+ def forward(
412
+ self,
413
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
414
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
415
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
416
+ attention_mask: Optional[torch.FloatTensor] = None,
417
+ head_mask: Optional[torch.FloatTensor] = None,
418
+ encoder_hidden_states: Optional[torch.Tensor] = None,
419
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
420
+ output_attentions: Optional[bool] = False,
421
+ use_cache: Optional[bool] = False,
422
+ build_dp: bool = False,
423
+ ):
424
+ mixed_x_layer = self.c_attn(hidden_states)
425
+ _, _, H_3 = mixed_x_layer.size()
426
+ H = H_3 // 3
427
+ query, key, value = torch.split(mixed_x_layer, [H, H, H], dim=-1)
428
+ #query, key, value = mixed_x_layer.split(self.split_size, dim=2)
429
+
430
+ query = self._split_heads(query, self.num_heads, self.head_dim)
431
+ key = self._split_heads(key, self.num_heads, self.head_dim)
432
+ value = self._split_heads(value, self.num_heads, self.head_dim)
433
+
434
+ if rotary_pos_emb_list is not None:
435
+ cur_len = query.shape[1]
436
+ if len(rotary_pos_emb_list) == 1:
437
+ rotary_pos_emb = rotary_pos_emb_list[0]
438
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
439
+ rotary_pos_emb = (rotary_pos_emb,) * 2
440
+ q_pos_emb, k_pos_emb = rotary_pos_emb
441
+ # Slice the pos emb for current inference
442
+ if not build_dp:
443
+ query = apply_rotary_pos_emb(query, q_pos_emb)
444
+ key = apply_rotary_pos_emb(key, k_pos_emb)
445
+ else:
446
+ query_list = []
447
+ key_list = []
448
+ for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
449
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
450
+ rotary_pos_emb = (rotary_pos_emb,) * 2
451
+ q_pos_emb, k_pos_emb = rotary_pos_emb
452
+ # Slice the pos emb for current inference
453
+ if not build_dp:
454
+ query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
455
+ key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
456
+ query = torch.cat(query_list, dim=0)
457
+ key = torch.cat(key_list, dim=0)
458
+
459
+ if self.use_cache_quantization:
460
+ key = quantize_cache_v(key.permute(0, 2, 1, 3),
461
+ bits=8,
462
+ qmin=self.cache_qmin,
463
+ qmax=self.cache_qmax)
464
+ value = quantize_cache_v(value.permute(0, 2, 1, 3),
465
+ bits=8,
466
+ qmin=self.cache_qmin,
467
+ qmax=self.cache_qmax)
468
+
469
+
470
+ if layer_past is not None:
471
+ past_key, past_value = layer_past[0], layer_past[1]
472
+ if self.use_cache_quantization:
473
+ # use_cache_quantization:
474
+ # present=((q_key,key_scale,key_zero_point),
475
+ # (q_value,value_scale,value_zero_point))
476
+ key = (torch.cat((past_key[0], key[0]), dim=2),
477
+ torch.cat((past_key[1], key[1]), dim=2),
478
+ torch.cat((past_key[2], key[2]), dim=2))
479
+ value = (torch.cat((past_value[0], value[0]), dim=2),
480
+ torch.cat((past_value[1], value[1]), dim=2),
481
+ torch.cat((past_value[2], value[2]), dim=2))
482
+ else:
483
+ # not use_cache_quantization:
484
+ # present=(key,value)
485
+ key = torch.cat((past_key, key), dim=1)
486
+ value = torch.cat((past_value, value), dim=1)
487
+
488
+ if use_cache:
489
+ present = (key, value)
490
+ else:
491
+ present = None
492
+
493
+ key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
494
+ if key_size > self.seq_length and self.use_logn_attn and not self.training:
495
+ if self.use_cache_quantization:
496
+ seq_start = key[0].size(2) - query.size(1)
497
+ seq_end = key[0].size(2)
498
+ else:
499
+ seq_start = key.size(1) - query.size(1)
500
+ seq_end = key.size(1)
501
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
502
+ query = query * logn_tensor.expand_as(query)
503
+
504
+ if (
505
+ self.use_flash_attn
506
+ and flash_attn_unpadded_func is not None
507
+ and not self.is_fp32
508
+ and query.is_cuda
509
+ ):
510
+ q, k, v = query, key, value
511
+ attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
512
+ else:
513
+ key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
514
+ if query.size(1) == key_size:
515
+ causal_mask = torch.tril(
516
+ torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)
517
+ ).view(1, 1, key_size, key_size)
518
+ else:
519
+ causal_mask = None
520
+ query = query.permute(0, 2, 1, 3)
521
+ if not self.use_cache_quantization:
522
+ key = key.permute(0, 2, 1, 3)
523
+ value = value.permute(0, 2, 1, 3)
524
+ if (
525
+ causal_mask is None
526
+ and self.use_flash_attn
527
+ and flash_attn_unpadded_func is not None
528
+ and not self.is_fp32
529
+ and not query.is_cuda
530
+ ):
531
+ raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
532
+
533
+ if not self.use_cache_quantization and SUPPORT_TORCH2:
534
+ if attention_mask is not None:
535
+ attention_mask = attention_mask.expand(-1, -1, query.size(2), -1)
536
+ if causal_mask is not None:
537
+ attention_mask = attention_mask.masked_fill(~causal_mask, torch.finfo(query.dtype).min)
538
+ else:
539
+ attention_mask = causal_mask
540
+ attn_output = F.scaled_dot_product_attention(
541
+ query, key, value, attn_mask=attention_mask
542
+ ).transpose(1, 2)
543
+ attn_weight = None
544
+ else:
545
+ attn_output, attn_weight = self._attn(
546
+ query, key, value, causal_mask, attention_mask, head_mask
547
+ )
548
+ context_layer = self._merge_heads(
549
+ attn_output, self.num_heads, self.head_dim
550
+ )
551
+
552
+ attn_output = self.c_proj(context_layer)
553
+
554
+ outputs = (attn_output, present)
555
+ if output_attentions:
556
+ if (
557
+ self.use_flash_attn
558
+ and flash_attn_unpadded_func is not None
559
+ and not self.is_fp32
560
+ ):
561
+ raise ValueError("Cannot output attentions while using flash-attn")
562
+ elif not self.use_cache_quantization and SUPPORT_TORCH2:
563
+ raise ValueError("Cannot output attentions while using scaled_dot_product_attention")
564
+ else:
565
+ outputs += (attn_weight,)
566
+
567
+ return outputs
568
+
569
+
570
+ class QWenMLP(nn.Module):
571
+ def __init__(self, config):
572
+ super().__init__()
573
+ #self.w1 = nn.Linear(
574
+ # config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
575
+ #)
576
+ #self.w2 = nn.Linear(
577
+ # config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
578
+ #)
579
+ #ff_dim_in = config.intermediate_size // 2
580
+ self.w1 = nn.Linear(
581
+ config.hidden_size, (config.intermediate_size // 2) * 0.90625, bias=not config.no_bias
582
+ )
583
+ self.w2 = nn.Linear(
584
+ config.hidden_size, (config.intermediate_size // 2) * 0.90625, bias=not config.no_bias
585
+ )
586
+ ff_dim_in = (config.intermediate_size // 2) * 0.90625
587
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
588
+
589
+ def forward(self, hidden_states):
590
+ a1 = self.w1(hidden_states)
591
+ a2 = self.w2(hidden_states)
592
+ intermediate_parallel = a1 * F.silu(a2)
593
+ output = self.c_proj(intermediate_parallel)
594
+ return output
595
+
596
+
597
+ class QWenBlock(nn.Module):
598
+ def __init__(self, config):
599
+ super().__init__()
600
+ hidden_size = config.hidden_size
601
+ self.bf16 = config.bf16
602
+
603
+ self.ln_1 = RMSNorm(
604
+ hidden_size,
605
+ eps=config.layer_norm_epsilon,
606
+ )
607
+ self.attn = QWenAttention(config)
608
+ self.ln_2 = RMSNorm(
609
+ hidden_size,
610
+ eps=config.layer_norm_epsilon,
611
+ )
612
+
613
+ self.mlp = QWenMLP(config)
614
+
615
+ def forward(
616
+ self,
617
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
618
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
619
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
620
+ attention_mask: Optional[torch.FloatTensor] = None,
621
+ head_mask: Optional[torch.FloatTensor] = None,
622
+ encoder_hidden_states: Optional[torch.Tensor] = None,
623
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
624
+ use_cache: Optional[bool] = False,
625
+ output_attentions: Optional[bool] = False,
626
+ build_dp: Optional[bool] = False,
627
+ ):
628
+ layernorm_output = self.ln_1(hidden_states)
629
+
630
+ attn_outputs = self.attn(
631
+ layernorm_output,
632
+ rotary_pos_emb_list,
633
+ layer_past=layer_past,
634
+ attention_mask=attention_mask,
635
+ head_mask=head_mask,
636
+ use_cache=use_cache,
637
+ output_attentions=output_attentions,
638
+ build_dp=build_dp,
639
+ )
640
+ attn_output = attn_outputs[0]
641
+
642
+ outputs = attn_outputs[1:]
643
+
644
+ residual = hidden_states
645
+ layernorm_input = attn_output + residual
646
+
647
+ layernorm_output = self.ln_2(layernorm_input)
648
+
649
+ residual = layernorm_input
650
+ mlp_output = self.mlp(layernorm_output)
651
+ hidden_states = residual + mlp_output
652
+
653
+ if use_cache:
654
+ outputs = (hidden_states,) + outputs
655
+ else:
656
+ outputs = (hidden_states,) + outputs[1:]
657
+
658
+ return outputs
659
+
660
+
661
+ class QWenPreTrainedModel(PreTrainedModel):
662
+ config_class = QWenConfig
663
+ base_model_prefix = "transformer"
664
+ is_parallelizable = False
665
+ supports_gradient_checkpointing = True
666
+ _no_split_modules = ["QWenBlock"]
667
+ _skip_keys_device_placement = "past_key_values"
668
+
669
+ def __init__(self, *inputs, **kwargs):
670
+ super().__init__(*inputs, **kwargs)
671
+
672
+ def _init_weights(self, module):
673
+ """Initialize the weights."""
674
+ if isinstance(module, nn.Linear):
675
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
676
+ if module.bias is not None:
677
+ module.bias.data.zero_()
678
+ elif isinstance(module, nn.Embedding):
679
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
680
+ if module.padding_idx is not None:
681
+ module.weight.data[module.padding_idx].zero_()
682
+ elif isinstance(module, RMSNorm):
683
+ module.weight.data.fill_(1.0)
684
+
685
+ for name, p in module.named_parameters():
686
+ if name == "c_proj.weight":
687
+ p.data.normal_(
688
+ mean=0.0,
689
+ std=(
690
+ self.config.initializer_range
691
+ / math.sqrt(2 * self.config.num_hidden_layers)
692
+ ),
693
+ )
694
+
695
+ def _set_gradient_checkpointing(self, module, value=False):
696
+ if isinstance(module, QWenModel):
697
+ module.gradient_checkpointing = value
698
+
699
+
700
+ class QWenModel(QWenPreTrainedModel):
701
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
702
+
703
+ def __init__(self, config):
704
+ super().__init__(config)
705
+ self.vocab_size = config.vocab_size
706
+ self.num_hidden_layers = config.num_hidden_layers
707
+ self.embed_dim = config.hidden_size
708
+ self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False
709
+
710
+ self.gradient_checkpointing = False
711
+ self.use_dynamic_ntk = config.use_dynamic_ntk
712
+ self.seq_length = config.seq_length
713
+
714
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
715
+
716
+ self.drop = nn.Dropout(config.emb_dropout_prob)
717
+
718
+ if config.rotary_pct == 1.0:
719
+ self.rotary_ndims = None
720
+ else:
721
+ assert config.rotary_pct < 1
722
+ self.rotary_ndims = int(
723
+ config.kv_channels * config.rotary_pct
724
+ )
725
+ dim = (
726
+ self.rotary_ndims
727
+ if self.rotary_ndims is not None
728
+ else config.kv_channels
729
+ )
730
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
731
+
732
+ self.use_flash_attn = config.use_flash_attn
733
+ self.is_fp32 = not (config.bf16 or config.fp16)
734
+
735
+ self.h = nn.ModuleList(
736
+ [
737
+ QWenBlock(
738
+ config
739
+ )
740
+ for i in range(config.num_hidden_layers)
741
+ ]
742
+ )
743
+ self.ln_f = RMSNorm(
744
+ self.embed_dim,
745
+ eps=config.layer_norm_epsilon,
746
+ )
747
+
748
+ self.post_init()
749
+
750
+ def get_input_embeddings(self):
751
+ return self.wte
752
+
753
+ def set_input_embeddings(self, new_embeddings):
754
+ self.wte = new_embeddings
755
+
756
+ def get_ntk_alpha(self, true_seq_len):
757
+ context_value = math.log(true_seq_len / self.seq_length, 2) + 1
758
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
759
+ ntk_alpha = max(ntk_alpha, 1)
760
+ return ntk_alpha
761
+
762
+ def forward(
763
+ self,
764
+ input_ids: Optional[torch.LongTensor] = None,
765
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
766
+ attention_mask: Optional[torch.FloatTensor] = None,
767
+ token_type_ids: Optional[torch.LongTensor] = None,
768
+ position_ids: Optional[torch.LongTensor] = None,
769
+ head_mask: Optional[torch.FloatTensor] = None,
770
+ inputs_embeds: Optional[torch.FloatTensor] = None,
771
+ encoder_hidden_states: Optional[torch.Tensor] = None,
772
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
773
+ use_cache: Optional[bool] = None,
774
+ output_attentions: Optional[bool] = None,
775
+ output_hidden_states: Optional[bool] = None,
776
+ return_dict: Optional[bool] = None,
777
+ build_dp: Optional[bool] = False,
778
+ ):
779
+ output_attentions = (
780
+ output_attentions
781
+ if output_attentions is not None
782
+ else self.config.output_attentions
783
+ )
784
+ output_hidden_states = (
785
+ output_hidden_states
786
+ if output_hidden_states is not None
787
+ else self.config.output_hidden_states
788
+ )
789
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
790
+ return_dict = (
791
+ return_dict if return_dict is not None else self.config.use_return_dict
792
+ )
793
+
794
+ if input_ids is not None and inputs_embeds is not None:
795
+ raise ValueError(
796
+ "You cannot specify both input_ids and inputs_embeds at the same time"
797
+ )
798
+ elif input_ids is not None:
799
+ input_shape = input_ids.size()
800
+ input_ids = input_ids.view(-1, input_shape[-1])
801
+ batch_size = input_ids.shape[0]
802
+ elif inputs_embeds is not None:
803
+ input_shape = inputs_embeds.size()[:-1]
804
+ batch_size = inputs_embeds.shape[0]
805
+ else:
806
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
807
+
808
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
809
+
810
+ if token_type_ids is not None:
811
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
812
+ if position_ids is not None:
813
+ position_ids = position_ids.view(-1, input_shape[-1])
814
+
815
+ if past_key_values is None:
816
+ past_length = 0
817
+ past_key_values = tuple([None] * len(self.h))
818
+ else:
819
+ if self.use_cache_quantization:
820
+ past_length = past_key_values[0][0][0].size(2)
821
+ else:
822
+ past_length = past_key_values[0][0].size(-2)
823
+ if position_ids is None:
824
+ position_ids = torch.arange(
825
+ past_length,
826
+ input_shape[-1] + past_length,
827
+ dtype=torch.long,
828
+ device=device,
829
+ )
830
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
831
+
832
+ if attention_mask is not None:
833
+ if batch_size <= 0:
834
+ raise ValueError("batch_size has to be defined and > 0")
835
+ attention_mask = attention_mask.view(batch_size, -1)
836
+ attention_mask = attention_mask[:, None, None, :]
837
+ attention_mask = attention_mask.to(dtype=self.dtype)
838
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
839
+
840
+ encoder_attention_mask = None
841
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
842
+
843
+ if inputs_embeds is None:
844
+ inputs_embeds = self.wte(input_ids)
845
+ hidden_states = inputs_embeds
846
+
847
+ kv_seq_len = hidden_states.size()[1]
848
+ if past_key_values[0] is not None:
849
+ # past key values[0][0] shape: bs * seq_len * head_num * dim
850
+ if self.use_cache_quantization:
851
+ kv_seq_len += past_key_values[0][0][0].shape[2]
852
+ else:
853
+ kv_seq_len += past_key_values[0][0].shape[1]
854
+
855
+ if self.training or not self.use_dynamic_ntk:
856
+ ntk_alpha_list = [1.0]
857
+ elif kv_seq_len != hidden_states.size()[1]:
858
+ ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
859
+ else:
860
+ ntk_alpha_list = []
861
+ if attention_mask is not None and kv_seq_len > self.seq_length:
862
+ true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
863
+ for i in range(hidden_states.size()[0]):
864
+ true_seq_len = true_seq_lens[i].item()
865
+ ntk_alpha = self.get_ntk_alpha(true_seq_len)
866
+ ntk_alpha_list.append(ntk_alpha)
867
+ else:
868
+ ntk_alpha = self.get_ntk_alpha(kv_seq_len)
869
+ ntk_alpha_list.append(ntk_alpha)
870
+ self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
871
+ rotary_pos_emb_list = [
872
+ self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list
873
+ ]
874
+
875
+ hidden_states = self.drop(hidden_states)
876
+ output_shape = input_shape + (hidden_states.size(-1),)
877
+
878
+ if self.gradient_checkpointing and self.training:
879
+ if use_cache:
880
+ logger.warning_once(
881
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
882
+ )
883
+ use_cache = False
884
+
885
+ presents = () if use_cache else None
886
+ all_self_attentions = () if output_attentions else None
887
+ all_hidden_states = () if output_hidden_states else None
888
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
889
+
890
+ if output_hidden_states:
891
+ all_hidden_states = all_hidden_states + (hidden_states,)
892
+
893
+ if self.gradient_checkpointing and self.training:
894
+
895
+ def create_custom_forward(module):
896
+ def custom_forward(*inputs):
897
+ # None for past_key_value
898
+ return module(*inputs, use_cache, output_attentions)
899
+
900
+ return custom_forward
901
+
902
+ outputs = torch.utils.checkpoint.checkpoint(
903
+ create_custom_forward(block),
904
+ hidden_states,
905
+ rotary_pos_emb_list,
906
+ None,
907
+ attention_mask,
908
+ head_mask[i],
909
+ encoder_hidden_states,
910
+ encoder_attention_mask,
911
+ )
912
+ else:
913
+ outputs = block(
914
+ hidden_states,
915
+ layer_past=layer_past,
916
+ rotary_pos_emb_list=rotary_pos_emb_list,
917
+ attention_mask=attention_mask,
918
+ head_mask=head_mask[i],
919
+ encoder_hidden_states=encoder_hidden_states,
920
+ encoder_attention_mask=encoder_attention_mask,
921
+ use_cache=use_cache,
922
+ output_attentions=output_attentions,
923
+ build_dp=build_dp
924
+ )
925
+
926
+ hidden_states = outputs[0]
927
+ if use_cache is True:
928
+ presents = presents + (outputs[1],)
929
+
930
+ if output_attentions:
931
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
932
+
933
+ hidden_states = self.ln_f(hidden_states)
934
+ hidden_states = hidden_states.view(output_shape)
935
+ # Add last hidden state
936
+ if output_hidden_states:
937
+ all_hidden_states = all_hidden_states + (hidden_states,)
938
+
939
+ if not return_dict:
940
+ return tuple(
941
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
942
+ )
943
+
944
+ return BaseModelOutputWithPast(
945
+ last_hidden_state=hidden_states,
946
+ past_key_values=presents,
947
+ hidden_states=all_hidden_states,
948
+ attentions=all_self_attentions,
949
+ )
950
+
951
+
952
+ class QWenLMHeadModel(QWenPreTrainedModel):
953
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
954
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
955
+
956
+ def __init__(self, config):
957
+ super().__init__(config)
958
+ assert (
959
+ config.bf16 + config.fp16 + config.fp32 <= 1
960
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
961
+
962
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
963
+
964
+ if autoset_precision:
965
+ if SUPPORT_BF16:
966
+ logger.warn(
967
+ "The model is automatically converting to bf16 for faster inference. "
968
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
969
+ )
970
+ config.bf16 = True
971
+ elif SUPPORT_FP16:
972
+ logger.warn(
973
+ "The model is automatically converting to fp16 for faster inference. "
974
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
975
+ )
976
+ config.fp16 = True
977
+ else:
978
+ config.fp32 = True
979
+
980
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
981
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
982
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
983
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
984
+ if config.fp32:
985
+ if SUPPORT_BF16:
986
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
987
+ elif SUPPORT_FP16:
988
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
989
+
990
+ if config.use_flash_attn == "auto":
991
+ if config.bf16 or config.fp16:
992
+ logger.warn("Try importing flash-attention for faster inference...")
993
+ config.use_flash_attn = True
994
+ else:
995
+ config.use_flash_attn = False
996
+ if config.use_flash_attn and config.fp32:
997
+ logger.warn("Flash attention will be disabled because it does NOT support fp32.")
998
+
999
+ if config.use_flash_attn:
1000
+ _import_flash_attn()
1001
+
1002
+ self.transformer = QWenModel(config)
1003
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1004
+
1005
+ if config.bf16:
1006
+ self.transformer.bfloat16()
1007
+ self.lm_head.bfloat16()
1008
+ if config.fp16:
1009
+ self.transformer.half()
1010
+ self.lm_head.half()
1011
+ self.post_init()
1012
+
1013
+ def get_output_embeddings(self):
1014
+ return self.lm_head
1015
+
1016
+ def set_output_embeddings(self, new_embeddings):
1017
+ self.lm_head = new_embeddings
1018
+
1019
+ def prepare_inputs_for_generation(
1020
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
1021
+ ):
1022
+ if past_key_values:
1023
+ input_ids = input_ids[:, -1].unsqueeze(-1)
1024
+
1025
+ if input_ids.size(0) == 1:
1026
+ attention_mask = None
1027
+ else:
1028
+ attention_mask = kwargs.get("attention_mask", None)
1029
+
1030
+ if inputs_embeds is not None and past_key_values is None:
1031
+ model_inputs = {"inputs_embeds": inputs_embeds}
1032
+ else:
1033
+ model_inputs = {"input_ids": input_ids}
1034
+
1035
+ model_inputs.update(
1036
+ {
1037
+ "past_key_values": past_key_values,
1038
+ "use_cache": kwargs.get("use_cache"),
1039
+ "attention_mask": attention_mask,
1040
+ }
1041
+ )
1042
+ return model_inputs
1043
+
1044
+ def forward(
1045
+ self,
1046
+ input_ids: Optional[torch.LongTensor] = None,
1047
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1048
+ attention_mask: Optional[torch.FloatTensor] = None,
1049
+ token_type_ids: Optional[torch.LongTensor] = None,
1050
+ position_ids: Optional[torch.LongTensor] = None,
1051
+ head_mask: Optional[torch.FloatTensor] = None,
1052
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1053
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1054
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1055
+ labels: Optional[torch.LongTensor] = None,
1056
+ use_cache: Optional[bool] = None,
1057
+ output_attentions: Optional[bool] = None,
1058
+ output_hidden_states: Optional[bool] = None,
1059
+ return_dict: Optional[bool] = None,
1060
+ build_dp: Optional[bool] = False,
1061
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1062
+
1063
+ return_dict = (
1064
+ return_dict if return_dict is not None else self.config.use_return_dict
1065
+ )
1066
+
1067
+ transformer_outputs = self.transformer(
1068
+ input_ids,
1069
+ past_key_values=past_key_values,
1070
+ attention_mask=attention_mask,
1071
+ token_type_ids=token_type_ids,
1072
+ position_ids=position_ids,
1073
+ head_mask=head_mask,
1074
+ inputs_embeds=inputs_embeds,
1075
+ encoder_hidden_states=encoder_hidden_states,
1076
+ encoder_attention_mask=encoder_attention_mask,
1077
+ use_cache=use_cache,
1078
+ output_attentions=output_attentions,
1079
+ output_hidden_states=output_hidden_states,
1080
+ return_dict=return_dict,
1081
+ build_dp=build_dp,
1082
+ )
1083
+ hidden_states = transformer_outputs[0]
1084
+
1085
+ lm_logits = self.lm_head(hidden_states)
1086
+
1087
+ loss = None
1088
+ if labels is not None:
1089
+ labels = labels.to(lm_logits.device)
1090
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1091
+ shift_labels = labels[..., 1:].contiguous()
1092
+ loss_fct = CrossEntropyLoss()
1093
+ loss = loss_fct(
1094
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
1095
+ )
1096
+
1097
+ if not return_dict:
1098
+ output = (lm_logits,) + transformer_outputs[1:]
1099
+ return ((loss,) + output) if loss is not None else output
1100
+
1101
+ return CausalLMOutputWithPast(
1102
+ loss=loss,
1103
+ logits=lm_logits,
1104
+ past_key_values=transformer_outputs.past_key_values,
1105
+ hidden_states=transformer_outputs.hidden_states,
1106
+ attentions=transformer_outputs.attentions,
1107
+ )
1108
+
1109
+ @staticmethod
1110
+ def _reorder_cache(
1111
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1112
+ ) -> Tuple[Tuple[torch.Tensor]]:
1113
+
1114
+ return tuple(
1115
+ tuple(
1116
+ past_state.index_select(0, beam_idx.to(past_state.device))
1117
+ for past_state in layer_past
1118
+ )
1119
+ for layer_past in past_key_values
1120
+ )
1121
+
1122
+ def chat(
1123
+ self,
1124
+ tokenizer: PreTrainedTokenizer,
1125
+ query: str,
1126
+ history: Optional[HistoryType],
1127
+ system: str = "You are a helpful assistant.",
1128
+ stream: Optional[bool] = _SENTINEL,
1129
+ stop_words_ids: Optional[List[List[int]]] = None,
1130
+ generation_config: Optional[GenerationConfig] = None,
1131
+ **kwargs,
1132
+ ) -> Tuple[str, HistoryType]:
1133
+ generation_config = generation_config if generation_config is not None else self.generation_config
1134
+
1135
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
1136
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1137
+ if history is None:
1138
+ history = []
1139
+ else:
1140
+ # make a copy of the user's input such that is is left untouched
1141
+ history = copy.deepcopy(history)
1142
+
1143
+ if stop_words_ids is None:
1144
+ stop_words_ids = []
1145
+
1146
+ max_window_size = kwargs.get('max_window_size', None)
1147
+ if max_window_size is None:
1148
+ max_window_size = generation_config.max_window_size
1149
+ raw_text, context_tokens = make_context(
1150
+ tokenizer,
1151
+ query,
1152
+ history=history,
1153
+ system=system,
1154
+ max_window_size=max_window_size,
1155
+ chat_format=generation_config.chat_format,
1156
+ )
1157
+
1158
+ stop_words_ids.extend(get_stop_words_ids(
1159
+ generation_config.chat_format, tokenizer
1160
+ ))
1161
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1162
+ outputs = self.generate(
1163
+ input_ids,
1164
+ stop_words_ids=stop_words_ids,
1165
+ return_dict_in_generate=False,
1166
+ generation_config=generation_config,
1167
+ **kwargs,
1168
+ )
1169
+
1170
+ response = decode_tokens(
1171
+ outputs[0],
1172
+ tokenizer,
1173
+ raw_text_len=len(raw_text),
1174
+ context_length=len(context_tokens),
1175
+ chat_format=generation_config.chat_format,
1176
+ verbose=False,
1177
+ errors='replace'
1178
+ )
1179
+
1180
+ # as history is a copy of the user inputs,
1181
+ # we can always return the new turn to the user.
1182
+ # separating input history and output history also enables the user
1183
+ # to implement more complex history management
1184
+ history.append((query, response))
1185
+
1186
+ return response, history
1187
+
1188
+ def chat_stream(
1189
+ self,
1190
+ tokenizer: PreTrainedTokenizer,
1191
+ query: str,
1192
+ history: Optional[HistoryType],
1193
+ system: str = "You are a helpful assistant.",
1194
+ stop_words_ids: Optional[List[List[int]]] = None,
1195
+ logits_processor: Optional[LogitsProcessorList] = None,
1196
+ generation_config: Optional[GenerationConfig] = None,
1197
+ **kwargs,
1198
+ ) -> Generator[str, Any, None]:
1199
+ generation_config = generation_config if generation_config is not None else self.generation_config
1200
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1201
+ if history is None:
1202
+ history = []
1203
+ if stop_words_ids is None:
1204
+ stop_words_ids = []
1205
+
1206
+ max_window_size = kwargs.get('max_window_size', None)
1207
+ if max_window_size is None:
1208
+ max_window_size = generation_config.max_window_size
1209
+ raw_text, context_tokens = make_context(
1210
+ tokenizer,
1211
+ query,
1212
+ history=history,
1213
+ system=system,
1214
+ max_window_size=max_window_size,
1215
+ chat_format=generation_config.chat_format,
1216
+ )
1217
+
1218
+ stop_words_ids.extend(get_stop_words_ids(
1219
+ generation_config.chat_format, tokenizer
1220
+ ))
1221
+ if stop_words_ids is not None:
1222
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1223
+ stop_words_ids=stop_words_ids,
1224
+ eos_token_id=generation_config.eos_token_id,
1225
+ )
1226
+ if logits_processor is None:
1227
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1228
+ else:
1229
+ logits_processor.append(stop_words_logits_processor)
1230
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1231
+
1232
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
1233
+ self.__class__.generate_stream = NewGenerationMixin.generate
1234
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
1235
+ stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
1236
+
1237
+ def stream_generator():
1238
+ outputs = []
1239
+ for token in self.generate_stream(
1240
+ input_ids,
1241
+ return_dict_in_generate=False,
1242
+ generation_config=stream_config,
1243
+ logits_processor=logits_processor,
1244
+ seed=-1,
1245
+ **kwargs):
1246
+ outputs.append(token.item())
1247
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
1248
+
1249
+ return stream_generator()
1250
+
1251
+ def generate(
1252
+ self,
1253
+ inputs: Optional[torch.Tensor] = None,
1254
+ generation_config: Optional[GenerationConfig] = None,
1255
+ logits_processor: Optional[LogitsProcessorList] = None,
1256
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1257
+ prefix_allowed_tokens_fn: Optional[
1258
+ Callable[[int, torch.Tensor], List[int]]
1259
+ ] = None,
1260
+ synced_gpus: Optional[bool] = None,
1261
+ assistant_model: Optional["PreTrainedModel"] = None,
1262
+ streamer: Optional["BaseStreamer"] = None,
1263
+ **kwargs,
1264
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1265
+ generation_config = generation_config if generation_config is not None else self.generation_config
1266
+
1267
+ # Process stop_words_ids.
1268
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1269
+ if stop_words_ids is None and generation_config is not None:
1270
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1271
+ if stop_words_ids is None:
1272
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1273
+
1274
+ if stop_words_ids is not None:
1275
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1276
+ stop_words_ids=stop_words_ids,
1277
+ eos_token_id=generation_config.eos_token_id,
1278
+ )
1279
+ if logits_processor is None:
1280
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1281
+ else:
1282
+ logits_processor.append(stop_words_logits_processor)
1283
+
1284
+ return super().generate(
1285
+ inputs,
1286
+ generation_config=generation_config,
1287
+ logits_processor=logits_processor,
1288
+ stopping_criteria=stopping_criteria,
1289
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1290
+ synced_gpus=synced_gpus,
1291
+ assistant_model=assistant_model,
1292
+ streamer=streamer,
1293
+ **kwargs,
1294
+ )
1295
+
1296
+
1297
+ class RotaryEmbedding(torch.nn.Module):
1298
+ def __init__(self, dim, base=10000):
1299
+ super().__init__()
1300
+ self.dim = dim
1301
+ self.base = base
1302
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1303
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1304
+ if importlib.util.find_spec("einops") is None:
1305
+ raise RuntimeError("einops is required for Rotary Embedding")
1306
+
1307
+ self._rotary_pos_emb_cache = None
1308
+ self._seq_len_cached = 0
1309
+ self._ntk_alpha_cached = 1.0
1310
+ self._ntk_alpha_cached_list = [1.0]
1311
+
1312
+ def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
1313
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1314
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1315
+ self.inv_freq = 1.0 / (
1316
+ base
1317
+ ** (
1318
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1319
+ / self.dim
1320
+ )
1321
+ )
1322
+ self._seq_len_cached = max(2 * seqlen, 16)
1323
+ self._ntk_alpha_cached = ntk_alpha
1324
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1325
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1326
+
1327
+ emb = torch.cat((freqs, freqs), dim=-1)
1328
+ from einops import rearrange
1329
+
1330
+ emb = rearrange(emb, "n d -> 1 n 1 d")
1331
+
1332
+ cos, sin = emb.cos(), emb.sin()
1333
+ self._rotary_pos_emb_cache = [cos, sin]
1334
+
1335
+ def forward(self, max_seq_len, ntk_alpha=1.0):
1336
+ self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
1337
+ cos, sin = self._rotary_pos_emb_cache
1338
+ return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
1339
+
1340
+
1341
+ def _rotate_half(x):
1342
+ from einops import rearrange
1343
+
1344
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1345
+ x1, x2 = x.unbind(dim=-2)
1346
+ return torch.cat((-x2, x1), dim=-1)
1347
+
1348
+
1349
+ def apply_rotary_pos_emb(t, freqs):
1350
+ """ Apply rotary embedding to the first rotary_dim of the iput
1351
+
1352
+ Arguments:
1353
+ t (tensor(batch_size, seq_len, n_head, head_dim)):
1354
+ the input embedding/hidden states
1355
+ freqs (list[tensor(1, seq_len, 1, rotary_dim), tensor(1, seq_len, 1, rotary_dim)]):
1356
+ the cached cos/sin position embeddings
1357
+ """
1358
+ rot_dim = freqs[0].shape[-1]
1359
+ cos, sin = freqs
1360
+ t_float = t.float()
1361
+ if apply_rotary_emb_func is not None and t.is_cuda:
1362
+ # apply_rotary_emb in flash_attn requires cos/sin to be of
1363
+ # shape (seqlen, rotary_dim / 2) and apply rotary embedding
1364
+ # to the first rotary_dim of the input
1365
+ cos = cos.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1366
+ sin = sin.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1367
+ return apply_rotary_emb_func(t_float, cos, sin).type_as(t)
1368
+ else:
1369
+ t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
1370
+ t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
1371
+ return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
1372
+
1373
+
1374
+ class RMSNorm(torch.nn.Module):
1375
+ def __init__(self, dim: int, eps: float = 1e-6):
1376
+ super().__init__()
1377
+ self.eps = eps
1378
+ self.weight = nn.Parameter(torch.ones(dim))
1379
+
1380
+ def _norm(self, x):
1381
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1382
+
1383
+ def forward(self, x):
1384
+ if rms_norm is not None and x.is_cuda:
1385
+ return rms_norm(x, self.weight, self.eps)
1386
+ else:
1387
+ output = self._norm(x.float()).type_as(x)
1388
+ return output * self.weight
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
qwen_generation_utils.py ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Generation support."""
7
+
8
+ from typing import Tuple, List, Union, Iterable
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from transformers import PreTrainedTokenizer
14
+ from transformers import logging
15
+ from transformers.generation import LogitsProcessor
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+ # Types.
20
+ HistoryType = List[Tuple[str, str]]
21
+ TokensType = List[int]
22
+ BatchTokensType = List[List[int]]
23
+
24
+
25
+ def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
26
+ for tokens in batch:
27
+ context_length = len(tokens)
28
+ if context_length < seq_length:
29
+ tokens.extend([pad_id] * (seq_length - context_length))
30
+ return batch
31
+
32
+
33
+ def get_ltor_masks_and_position_ids(
34
+ data,
35
+ eod_token,
36
+ reset_position_ids,
37
+ reset_attention_mask,
38
+ eod_mask_loss,
39
+ ):
40
+ """Build masks and position id for left to right model."""
41
+
42
+ # Extract batch size and sequence length.
43
+ micro_batch_size, seq_length = data.size()
44
+
45
+ # Attention mask (lower triangular).
46
+ if reset_attention_mask:
47
+ att_mask_batch = micro_batch_size
48
+ else:
49
+ att_mask_batch = 1
50
+ attention_mask = torch.tril(
51
+ torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
52
+ ).view(att_mask_batch, 1, seq_length, seq_length)
53
+
54
+ # Loss mask.
55
+ loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
56
+ if eod_mask_loss:
57
+ loss_mask[data == eod_token] = 0.0
58
+
59
+ # Position ids.
60
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
61
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
62
+ # We need to clone as the ids will be modifed based on batch index.
63
+ if reset_position_ids:
64
+ position_ids = position_ids.clone()
65
+
66
+ if reset_position_ids or reset_attention_mask:
67
+ # Loop through the batches:
68
+ for b in range(micro_batch_size):
69
+
70
+ # Find indecies where EOD token is.
71
+ eod_index = position_ids[b, data[b] == eod_token]
72
+ # Detach indecies from positions if going to modify positions.
73
+ if reset_position_ids:
74
+ eod_index = eod_index.clone()
75
+
76
+ # Loop through EOD indecies:
77
+ prev_index = 0
78
+ for j in range(eod_index.size()[0]):
79
+ i = eod_index[j]
80
+ # Mask attention loss.
81
+ if reset_attention_mask:
82
+ attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
83
+ # Reset positions.
84
+ if reset_position_ids:
85
+ position_ids[b, (i + 1) :] -= i + 1 - prev_index
86
+ prev_index = i + 1
87
+
88
+ # Convert attention mask to binary:
89
+ attention_mask = attention_mask < 0.5
90
+
91
+ return attention_mask, loss_mask, position_ids
92
+
93
+
94
+ def get_batch(context_tokens: torch.LongTensor, eod_id: int):
95
+ """Generate batch from context tokens."""
96
+ # Move to GPU.
97
+ tokens = context_tokens.contiguous().to(context_tokens.device)
98
+ # Get the attention mask and postition ids.
99
+ attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
100
+ tokens,
101
+ eod_id,
102
+ reset_position_ids=False,
103
+ reset_attention_mask=False,
104
+ eod_mask_loss=False,
105
+ )
106
+ return tokens, attention_mask, position_ids
107
+
108
+
109
+ def get_stop_words_ids(chat_format, tokenizer):
110
+ if chat_format == "raw":
111
+ stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
112
+ elif chat_format == "chatml":
113
+ stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
114
+ else:
115
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
116
+ return stop_words_ids
117
+
118
+
119
+ def make_context(
120
+ tokenizer: PreTrainedTokenizer,
121
+ query: str,
122
+ history: List[Tuple[str, str]] = None,
123
+ system: str = "",
124
+ max_window_size: int = 6144,
125
+ chat_format: str = "chatml",
126
+ ):
127
+ if history is None:
128
+ history = []
129
+
130
+ if chat_format == "chatml":
131
+ im_start, im_end = "<|im_start|>", "<|im_end|>"
132
+ im_start_tokens = [tokenizer.im_start_id]
133
+ im_end_tokens = [tokenizer.im_end_id]
134
+ nl_tokens = tokenizer.encode("\n")
135
+
136
+ def _tokenize_str(role, content):
137
+ return f"{role}\n{content}", tokenizer.encode(
138
+ role, allowed_special=set()
139
+ ) + nl_tokens + tokenizer.encode(content, allowed_special=set())
140
+
141
+ system_text, system_tokens_part = _tokenize_str("system", system)
142
+ system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
143
+
144
+ raw_text = ""
145
+ context_tokens = []
146
+
147
+ for turn_query, turn_response in reversed(history):
148
+ query_text, query_tokens_part = _tokenize_str("user", turn_query)
149
+ query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
150
+ response_text, response_tokens_part = _tokenize_str(
151
+ "assistant", turn_response
152
+ )
153
+ response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
154
+
155
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
156
+ prev_chat = (
157
+ f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
158
+ )
159
+
160
+ current_context_size = (
161
+ len(system_tokens) + len(next_context_tokens) + len(context_tokens)
162
+ )
163
+ if current_context_size < max_window_size:
164
+ context_tokens = next_context_tokens + context_tokens
165
+ raw_text = prev_chat + raw_text
166
+ else:
167
+ break
168
+
169
+ context_tokens = system_tokens + context_tokens
170
+ raw_text = f"{im_start}{system_text}{im_end}" + raw_text
171
+ context_tokens += (
172
+ nl_tokens
173
+ + im_start_tokens
174
+ + _tokenize_str("user", query)[1]
175
+ + im_end_tokens
176
+ + nl_tokens
177
+ + im_start_tokens
178
+ + tokenizer.encode("assistant")
179
+ + nl_tokens
180
+ )
181
+ raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
182
+
183
+ elif chat_format == "raw":
184
+ raw_text = query
185
+ context_tokens = tokenizer.encode(raw_text)
186
+ else:
187
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
188
+
189
+ return raw_text, context_tokens
190
+
191
+
192
+ def _decode_default(
193
+ tokens: List[int],
194
+ *,
195
+ stop_words: List[str],
196
+ eod_words: List[str],
197
+ tokenizer: PreTrainedTokenizer,
198
+ raw_text_len: int,
199
+ verbose: bool = False,
200
+ return_end_reason: bool = False,
201
+ errors: str='replace',
202
+ ):
203
+ trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
204
+ if verbose:
205
+ print("\nRaw Generate: ", trim_decode_tokens)
206
+
207
+ end_reason = f"Gen length {len(tokens)}"
208
+ for stop_word in stop_words:
209
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
210
+ for eod_word in eod_words:
211
+ if eod_word in trim_decode_tokens:
212
+ end_reason = f"Gen {eod_word!r}"
213
+ trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
214
+ trim_decode_tokens = trim_decode_tokens.strip()
215
+ if verbose:
216
+ print("\nEnd Reason:", end_reason)
217
+ print("\nGenerate: ", trim_decode_tokens)
218
+
219
+ if return_end_reason:
220
+ return trim_decode_tokens, end_reason
221
+ else:
222
+ return trim_decode_tokens
223
+
224
+
225
+ def _decode_chatml(
226
+ tokens: List[int],
227
+ *,
228
+ stop_words: List[str],
229
+ eod_token_ids: List[int],
230
+ tokenizer: PreTrainedTokenizer,
231
+ raw_text_len: int,
232
+ context_length: int,
233
+ verbose: bool = False,
234
+ return_end_reason: bool = False,
235
+ errors: str='replace'
236
+ ):
237
+ end_reason = f"Gen length {len(tokens)}"
238
+ eod_token_idx = context_length
239
+ for eod_token_idx in range(context_length, len(tokens)):
240
+ if tokens[eod_token_idx] in eod_token_ids:
241
+ end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
242
+ break
243
+
244
+ trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
245
+ if verbose:
246
+ print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
247
+ print("\nRaw Generate:", trim_decode_tokens)
248
+ print("\nEnd Reason:", end_reason)
249
+ for stop_word in stop_words:
250
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
251
+ trim_decode_tokens = trim_decode_tokens.strip()
252
+ if verbose:
253
+ print("\nGenerate:", trim_decode_tokens)
254
+
255
+ if return_end_reason:
256
+ return trim_decode_tokens, end_reason
257
+ else:
258
+ return trim_decode_tokens
259
+
260
+
261
+ def decode_tokens(
262
+ tokens: Union[torch.LongTensor, TokensType],
263
+ tokenizer: PreTrainedTokenizer,
264
+ raw_text_len: int,
265
+ context_length: int,
266
+ chat_format: str,
267
+ verbose: bool = False,
268
+ return_end_reason: bool = False,
269
+ errors: str="replace",
270
+ ) -> str:
271
+ if torch.is_tensor(tokens):
272
+ tokens = tokens.cpu().numpy().tolist()
273
+
274
+ if chat_format == "chatml":
275
+ return _decode_chatml(
276
+ tokens,
277
+ stop_words=[],
278
+ eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
279
+ tokenizer=tokenizer,
280
+ raw_text_len=raw_text_len,
281
+ context_length=context_length,
282
+ verbose=verbose,
283
+ return_end_reason=return_end_reason,
284
+ errors=errors,
285
+ )
286
+ elif chat_format == "raw":
287
+ return _decode_default(
288
+ tokens,
289
+ stop_words=["<|endoftext|>"],
290
+ eod_words=["<|endoftext|>"],
291
+ tokenizer=tokenizer,
292
+ raw_text_len=raw_text_len,
293
+ verbose=verbose,
294
+ return_end_reason=return_end_reason,
295
+ errors=errors,
296
+ )
297
+ else:
298
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
299
+
300
+
301
+ class StopWordsLogitsProcessor(LogitsProcessor):
302
+ """
303
+ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
304
+
305
+ Args:
306
+ stop_words_ids (:obj:`List[List[int]]`):
307
+ List of list of token ids of stop ids. In order to get the tokens of the words
308
+ that should not appear in the generated text, use :obj:`tokenizer(bad_word,
309
+ add_prefix_space=True).input_ids`.
310
+ eos_token_id (:obj:`int`):
311
+ The id of the `end-of-sequence` token.
312
+ """
313
+
314
+ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
315
+
316
+ if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
317
+ raise ValueError(
318
+ f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
319
+ )
320
+ if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
321
+ raise ValueError(
322
+ f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
323
+ )
324
+ if any(
325
+ any(
326
+ (not isinstance(token_id, (int, np.integer)) or token_id < 0)
327
+ for token_id in stop_word_ids
328
+ )
329
+ for stop_word_ids in stop_words_ids
330
+ ):
331
+ raise ValueError(
332
+ f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
333
+ )
334
+
335
+ self.stop_words_ids = list(
336
+ filter(
337
+ lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
338
+ )
339
+ )
340
+ self.eos_token_id = eos_token_id
341
+ for stop_token_seq in self.stop_words_ids:
342
+ assert (
343
+ len(stop_token_seq) > 0
344
+ ), "Stop words token sequences {} cannot have an empty list".format(
345
+ stop_words_ids
346
+ )
347
+
348
+ def __call__(
349
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
350
+ ) -> torch.FloatTensor:
351
+ stopped_samples = self._calc_stopped_samples(input_ids)
352
+ for i, should_stop in enumerate(stopped_samples):
353
+ if should_stop:
354
+ scores[i, self.eos_token_id] = float(2**15)
355
+ return scores
356
+
357
+ def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
358
+ if len(tokens) == 0:
359
+ # if bad word tokens is just one token always ban it
360
+ return True
361
+ elif len(tokens) > len(prev_tokens):
362
+ # if bad word tokens are longer then prev input_ids they can't be equal
363
+ return False
364
+ elif prev_tokens[-len(tokens) :].tolist() == tokens:
365
+ # if tokens match
366
+ return True
367
+ else:
368
+ return False
369
+
370
+ def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
371
+ stopped_samples = []
372
+ for prev_input_ids_slice in prev_input_ids:
373
+ match = False
374
+ for stop_token_seq in self.stop_words_ids:
375
+ if self._tokens_match(prev_input_ids_slice, stop_token_seq):
376
+ # if tokens do not match continue
377
+ match = True
378
+ break
379
+ stopped_samples.append(match)
380
+
381
+ return stopped_samples
382
+
383
+
384
+ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
385
+ """This function has been mostly taken from huggingface conversational
386
+ ai code at
387
+ https://medium.com/huggingface/how-to-build-a-state-of-the-art-
388
+ conversational-ai-with-transfer-learning-2d818ac26313"""
389
+
390
+ if top_k > 0:
391
+ # Remove all tokens with a probability less than the
392
+ # last token of the top-k
393
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
394
+ logits[indices_to_remove] = filter_value
395
+
396
+ if top_p > 0.0:
397
+ # Cconvert to 1D
398
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
399
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
400
+
401
+ # Remove tokens with cumulative probability above the threshold
402
+ sorted_indices_to_remove = cumulative_probs > top_p
403
+ # Shift the indices to the right to keep also the first token
404
+ # above the threshold
405
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
406
+ sorted_indices_to_remove[..., 0] = 0
407
+ for i in range(sorted_indices.size(0)):
408
+ indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
409
+ logits[i][indices_to_remove] = filter_value
410
+
411
+ return logits
412
+
413
+
414
+ def switch(val1, val2, boolean):
415
+ boolean = boolean.type_as(val1)
416
+ return (1 - boolean) * val1 + boolean * val2
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "Qwen/Qwen-7B--tokenization_qwen.QWenTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 32768,
11
+ "tokenizer_class": "QWenTokenizer"
12
+ }